首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5234篇
  免费   509篇
  国内免费   209篇
  2023年   46篇
  2022年   108篇
  2021年   190篇
  2020年   127篇
  2019年   143篇
  2018年   150篇
  2017年   93篇
  2016年   170篇
  2015年   276篇
  2014年   291篇
  2013年   355篇
  2012年   388篇
  2011年   378篇
  2010年   244篇
  2009年   203篇
  2008年   258篇
  2007年   228篇
  2006年   246篇
  2005年   187篇
  2004年   202篇
  2003年   151篇
  2002年   129篇
  2001年   106篇
  2000年   107篇
  1999年   97篇
  1998年   40篇
  1997年   43篇
  1996年   38篇
  1995年   36篇
  1994年   43篇
  1993年   41篇
  1992年   66篇
  1991年   74篇
  1990年   47篇
  1989年   57篇
  1988年   57篇
  1987年   55篇
  1986年   46篇
  1985年   55篇
  1984年   43篇
  1983年   31篇
  1982年   23篇
  1981年   20篇
  1979年   31篇
  1978年   23篇
  1977年   18篇
  1975年   21篇
  1974年   22篇
  1973年   25篇
  1971年   17篇
排序方式: 共有5952条查询结果,搜索用时 754 毫秒
761.
Introducing chimeric antigen receptor into immune cells against malignancies has contributed to a revolutionary innovation in cancer immunotherapy. As an important type of adaptive immune cells, T cells first caught researchers' attention and became great success in chimeric antigen receptor-based immunotherapy. However, engineered T cells seem to hit their bottleneck when resistance of cancerous cells, less encouraging responses in solid tumors and unwanted toxicities to the host remain to be solved.Meanwhile, innate immune cells get to join the race. Representatives such as natural killer cells, natural killer T cells, γδT cells and macrophages also prove to be well redirected with chimeric antigen receptors. Compared to chimeric antigen receptor engineered T cells, these engineered innate immune cells may possess multiple targeting and killing mechanisms, have the potential to crack the barrier of solid tumors and have less side effects in the host. Besides, possible universal access to cell resources and improvements in expansion and transduction techniques make these cells promising candidates with huge potential in translational medicine. Therefore, innate immune cells claim a brand-new dimension and are likely to supplement T cells greatly in the field of chimeric antigen receptor-based immunotherapy.  相似文献   
762.
Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1.  相似文献   
763.
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.  相似文献   
764.
765.
766.
767.
768.
Nucleoids, a subnuclear system capable of chain elongation   总被引:1,自引:0,他引:1  
Nucleoids, prepared by salt extraction of non-DNase-digested nuclei, have properties similar, but not identical, to those of nuclear matrices which are prepared by salt extraction of DNase-digested nuclei. Nuclear matrices retained less pulse-labelled DNA, slightly less bound DNA polymerase alpha and DNA primase, but had greater in vitro DNA synthesis and in vitro priming. Nucleoids contained larger (110 S) DNA chains than nuclear matrices (30 S). Each type of residual nuclear structure could synthesize 4.5 S Okazaki fragments. When extracted with increasing concentrations of salt, DNase-digested nucleo lost the ability for further elongation of the 4.5 S DNA intermediate after 0.1-0.2 M NaCl, whereas undigested nuclei retained this ability up to 0.9 M NaCl. Chain elongation to 28 S DNA chains could be restored to nucleoids, but not to nuclear matrices, by the addition of nuclear extracts.  相似文献   
769.
770.
Lactate accumulation in the medium and glucose utilization decreased during the induction of in vitro differentiation of mouse erythroleukemia (MEL) and human myeloid leukemia (HL-60) cells. The decrease in lactate accumulation occurred as early as 24 h after inducer treatment was initiated and occurred prior to the decrease in glucose utilization. The decrease in lactate accumulation was greater than that predicted by the decrease in glucose utilization, i.e., the ratio of glucose used glycolytically, as measured by lactate accumulation, to glucose used in other pathways ('glycolytic ratio') markedly decreased during differentiation in these cell lines. Differentiation correlated with the abrogation of the high levels of lactate accumulation first described by Warburg as characteristic of some transformed and neoplastic cells. Studies on both parental and differentiation-resistant variant MEL cell lines indicated that the changes in lactate accumulation were not dependent on the changes in glucose utilization and could be dissociated from them. Moreover, the changes in lactate accumulation only occurred in cells able to undergo differentiation-induced terminal cell division. This regulatable expression of lactate accumulation in MEL and HL-60 cells in vitro may make them useful model systems for the elucidation of the molecular mechanisms controlling lactate formation in malignant cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号