首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110903篇
  免费   1962篇
  国内免费   2190篇
  2023年   209篇
  2022年   483篇
  2021年   888篇
  2020年   602篇
  2019年   688篇
  2018年   12379篇
  2017年   11055篇
  2016年   8055篇
  2015年   1725篇
  2014年   1534篇
  2013年   1642篇
  2012年   5715篇
  2011年   14184篇
  2010年   12872篇
  2009年   8973篇
  2008年   10611篇
  2007年   12164篇
  2006年   1016篇
  2005年   1150篇
  2004年   1563篇
  2003年   1548篇
  2002年   1283篇
  2001年   645篇
  2000年   548篇
  1999年   382篇
  1998年   176篇
  1997年   182篇
  1996年   167篇
  1995年   119篇
  1994年   152篇
  1993年   119篇
  1992年   175篇
  1991年   184篇
  1990年   129篇
  1989年   105篇
  1988年   99篇
  1987年   109篇
  1986年   83篇
  1985年   92篇
  1984年   55篇
  1983年   65篇
  1982年   50篇
  1980年   38篇
  1979年   52篇
  1978年   41篇
  1977年   45篇
  1975年   40篇
  1974年   44篇
  1972年   270篇
  1971年   291篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
961.
Although studies have shown that arsenic exposure can induce apoptosis in a variety of cells, the exact molecular mechanism of chronic arsenicosis remains unclear. Based on our previous study on human serum, the present study was to determine whether pigment epithelium-derived factor (PEDF) plays a role in the damage induced by chronic arsenic exposure in a rat model and to explore the possible signaling pathway involved. Thirty male Wistar rats were randomly divided into three groups and the arsenite doses administered were 0, 10, and 50 mg/L, respectively. The experiment lasted for 6 months. Our results showed that level of arsenic increased significantly in serum, liver, brain, and kidney in arsenic-exposed groups. It was indicated that PEDF protein was widely distributed in the cytoplasm of various types of cells in liver, brain, and kidney. PEDF protein level was only changed when the arsenite dose reached 50 mg/L in liver and brain, whereas it was not changed in the kidney. In order to investigate the possible mechanism of PEDF-exerted damages upon arsenite exposure, apoptosis in liver and brain was assessed. The proportion of apoptotic cells gradually increased with increasing arsenic administration. The ratio of Bax/Bcl-2 in the high arsenic group (50 mg/L) was significantly higher than that in the control group. Therefore, we thought PEDF played a role in cell apoptosis of liver and brain which induced by sodium arsenite exposure, and the results also demonstrated that Bax and Bcl-2 might be two key targets in the action of PEDF.  相似文献   
962.
Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ∼52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.  相似文献   
963.
miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging‐related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR‐10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR‐10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up‐ or downregulate miR‐10a in young and old hMSCs. Upregulation of miR‐10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR‐10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full‐length 3′‐UTR region of KLF4 harboring the seed‐matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR‐10a mimic into cells. The luciferase activity was significantly repressed by the miR‐10a mimic, proving the direct binding of miR‐10a to the 3′‐UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR‐10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging‐related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc.  相似文献   
964.
The presence of an appropriate number of viable cells is prerequisite for successive differentiation during chondrogenesis. Chondrogenic differentiation has been reported to be influenced by mechanical stimuli. This research aimed to study the effects of cyclic compressive stress on cell viability of rat bone marrow‐derived MSCs (BMSCs) during chondrogenesis as well as its underlying mechanisms. The results showed that dynamic compression increased cell quantity and viability remarkably in the early stage of chondrogenesis, during which the expression of Ihh, Cyclin D1, CDK4, and Col2α1 were enhanced significantly. Possible signal pathways implicated in the process were explored in our study. MEK/ERK and p38 MAPK were not found to function in this process while BMP signaling seemed to play an important role in the mechanotransduction during chondrogenic proliferation. In conclusion, dynamic compressive stress could enhance cell viability during chondrogenesis, which might be achieved by activating BMP signaling. J. Cell. Physiol. 228: 1935–1942, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
965.
The majority of hematopoietic stem/progenitor cells (HSPCs) reside in bone marrow (BM) surrounded by a specialized environment, which governs HSPC function. Here we investigated the potential role of bone remodeling cells (osteoblasts and osteoclasts) in homeostasis and stress‐induced HSPC mobilization. Peripheral blood (PB) and BM in steady/mobilized state were collected from healthy donors undergoing allogeneic transplantation and from mice treated with granulocyte colony stimulating factor (G‐CSF), parathyroid hormone (PTH), or receptor activator of nuclear factor kappa‐B ligand (RANKL). The number and the functional markers of osteoblasts and osteoclasts were checked by a series of experiments. Our data showed that the number of CD45?Ter119? osteopontin (OPN)+ osteoblasts was significantly reduced from 4,085 ± 135 cells/femur on Day 0 to 1,032 ± 55 cells/femur on Day 5 in mice (P = 0.02) and from 21.38 ± 0.66 on Day 0 to 14.78 ± 0.65 on Day 5 in healthy donors (P < 0.01). Decrease of osteoblast number leads to reduced level of HSPC mobilization regulators stromal cell‐derived factor‐1 (SDF‐1), stem cell factor (SCF), and OPN. The osteoclast number at bone surface (OC.N/B.s) was significantly increased from 1.53 ± 0.12 on Day 0 to 4.42 ± 0.46 on Day 5 (P < 0.01) in G‐CSF‐treated mice and from 0.88 ± 0.20 on Day 0 to 3.24 ± 0.31 on Day 5 (P < 0.01) in human. Serum TRACP‐5b level showed a biphasic trend during G‐CSF treatment. The ratio of osteoblasts number per bone surface (OB.N/B.s) to OC.N/B.s was changed after adding PTH plus RANKL during G‐CSF treatment. In conclusion, short term G‐CSF treatment leads to reduction of osteoblasts and stimulation of osteoclasts, and interrupting bone remodeling balance may contribute to HSPC mobilization. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
966.
967.
968.
969.
Hyperhomocysteinemia (Hhcy) may induce memory deficits with β‐amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer‐like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2‐week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy‐induced memory deficits, enhance long‐term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up‐regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy‐induced tau hyperphosphorylation at multiple AD‐related sites through activation protein phosphatase‐2A (PP2A) with decreased inhibitory demethylated PP2AC at Leu309 and phosphorylated PP2AC at Tyr307. In addition, supplementation of betaine also decreased Aβ production with decreased presenilin‐1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy‐induced AD‐like pathological changes and memory deficits.  相似文献   
970.
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A2 (cPLA2) activation and energy failure/oxidative stress‐induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C‐α (PKC‐α), Src, Raf, and extracellular signal‐regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time‐ and concentration‐dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC‐α membrane translocation, Src, Raf, ERK, and cPLA2 phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate‐induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate‐treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N′,N′‐tetrakis(2‐pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC‐α, Src/Raf/ERK signaling and cPLA2 are active participants in diethylmaleate/iodoacetate‐induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号