首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   57篇
  2023年   5篇
  2022年   14篇
  2021年   18篇
  2020年   15篇
  2019年   9篇
  2018年   16篇
  2017年   17篇
  2016年   24篇
  2015年   45篇
  2014年   39篇
  2013年   49篇
  2012年   57篇
  2011年   55篇
  2010年   36篇
  2009年   51篇
  2008年   63篇
  2007年   48篇
  2006年   44篇
  2005年   50篇
  2004年   48篇
  2003年   47篇
  2002年   44篇
  2001年   10篇
  2000年   8篇
  1999年   9篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   9篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1985年   4篇
  1982年   4篇
  1981年   4篇
  1978年   4篇
  1975年   4篇
  1969年   5篇
  1966年   4篇
  1965年   3篇
  1964年   6篇
  1963年   9篇
  1962年   8篇
  1961年   5篇
  1960年   7篇
  1959年   5篇
  1958年   3篇
  1957年   5篇
  1951年   3篇
排序方式: 共有1008条查询结果,搜索用时 15 毫秒
111.
Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer, and therefore PTK inhibitors are currently under intense investigation as potential drug candidates. PTK inhibitor screening data are, however, poorly comparable because of the different assay technologies used. Here we report a comparison of ELISA-based assays for screening epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitory compound libraries to study interassay variations. All assays were based on the same protocol, except for the source of EGFR-TK enzymes. In the first protocol, the enzyme was isolated from A431 cells without affinity purification. In the second protocol, commercial EGFR-TK (Sigma) isolated from A431 cells by affinity-purification was employed. In the third protocol, an enzyme preparation obtained from a recombinant (Baculovirus transfected Sf9 cells) expression system was used. All assays employed the synthetic peptide substrate poly-(Glu,Tyr)l:4 and an ELISA-based system to detect phosphorylated tyrosine residues by a monoclonal antibody. We observed significant differences in both the activity of the enzymes and in the EGFR-TK inhibitory effect of our reference compound PD153035. The differences were significant in case of A431 cell lysate compared to affinity purified EGFR-TKs derived from either A431 cells or Baculovirus transfected Sf9 cells, whereas the latter two showed comparable results. Our data suggest that differences in terms of interassay variation are not related to the source of the enzyme but to its purity; changes in the mode of detection can markedly influence the reproducibility of results. In conclusion, normalization of the EGFR activity used for inhibitor screening and standardization of detection methods enable safe comparison of data.  相似文献   
112.
The Cumanians were originally Asian pastoral nomads who in the 13th century migrated to Hungary. We have examined mitochondrial DNA from members of the earliest Cumanian population in Hungary from two archeologically well-documented excavations and from 74 modern Hungarians from different rural locations in Hungary. Haplogroups were defined based on HVS I sequences and examinations of haplogroup-associated polymorphic sites of the protein coding region and of HVS II. To exclude contamination, some ancient DNA samples were cloned. A database was created from previously published mtDNA HVS I sequences (representing 2,615 individuals from different Asian and European populations) and 74 modem Hungarian sequences from the present study. This database was used to determine the relationships between the ancient Cumanians, modern Hungarians, and Eurasian populations and to estimate the genetic distances between these populations. We attempted to deduce the genetic trace of the migration of Cumanians. This study is the first ancient DNA characterization of an eastern pastoral nomad population that migrated into Europe. The results indicate that, while still possessing a Central Asian steppe culture, the Cumanians received a large admixture of maternal genes from more westerly populations before arriving in Hungary. A similar dilution of genetic, but not cultural, factors may have accompanied the settlement of other Asian nomads in Europe.  相似文献   
113.
Persistence infection is the keystone of the ruminant and human diseases called brucellosis and Malta fever, respectively, and is linked to the intracellular tropism of Brucella spp. While described as non-motile, Brucella spp. have all the genes except the chemotactic system, necessary to assemble a functional flagellum. We undertook to determine whether these genes are expressed and are playing a role in some step of the disease process. We demonstrated that in the early log phase of a growth curve in 2YT nutrient broth, Brucella melitensis expresses genes corresponding to the basal (MS ring) and the distal (hook and filament) parts of the flagellar apparatus. Under these conditions, a polar and sheathed flagellar structure is visible by transmission electron microscopy (TEM). We evaluated the effect of mutations in flagellar genes of B. melitensis encoding various parts of the structure, MS ring, P ring, motor protein, secretion apparatus, hook and filament. None of these mutants gave a discernible phenotype as compared with the wild-type strain in cellular models of infection. In contrast, all these mutants were unable to establish a chronic infection in mice infected via the intraperitoneal route, raising the question of the biological role(s) of this flagellar appendage.  相似文献   
114.
We present here an extensive study of differential gene expression in the initiation, acute and chronic phases of murine autoimmune arthritis with the use of high-density oligonucleotide arrays interrogating the entire mouse genome. Arthritis was induced in severe combined immunodeficient mice by using adoptive transfer of lymphocytes from proteoglycan-immunized arthritic BALB/c mice. In this unique system only proteoglycan-specific lymphocytes are transferred from arthritic mice into syngeneic immunodeficient recipients that lack adaptive immunity but have intact innate immunity on an identical (BALB/c) genetic background.  相似文献   
115.
The incorporation of concanamycin A, a potent inhibitor of vacuolar ATPases, into membranes of dimyristoyl phosphatidylcholine has been studied by using EPR of spin-labelled lipid chains. At an inhibitor/lipid ratio of 1:1 mol/mol, concanamycin A broadens the chain-melting transition of the phospholipid bilayer membrane, and effects the lipid chain motion in the fluid phase. The outer hyperfine splitting of a spin label at the C-5 position and the line widths of a spin label at the C-14 position of the lipid chain are increased by concanamycin A. Considerably larger membrane perturbations are caused by equimolar admixture of a designed synthetic 5-(5,6-dichloro-2-indolyl)-2,4-pentadienoyl V-ATPase inhibitor. These results indicate that concanamycin A intercalates readily between the lipid chains in biological membranes, with minimal perturbation of the bilayer structure. Essentially identical results are obtained with concanamycin A added to preformed membranes as a concentrated solution in DMSO, or mixed with lipid in organic solvent prior to membrane formation. Therefore, the common mode of addition in V-ATPase inhibition assays ensures incorporation of concanamycin into the lipid bilayer milieu, which provides an efficient channel of access to the transmembrane domains of the V-ATPase.  相似文献   
116.
Lipid-protein interactions in membranes are dynamic, and consequently are well studied by magnetic resonance spectroscopy. More recently, lipids associated with integral membrane proteins have been resolved in crystals by X-ray diffraction, mostly at cryogenic temperatures. The conformation and chain ordering of lipids in crystals of integral proteins are reviewed here and are compared and contrasted with results from magnetic resonance and with the crystal structures of phospholipid bilayers. Various aspects of spin-label magnetic resonance studies on lipid interactions with single integral proteins are also reviewed: specificity for phosphatidylcholine, competition with local anaesthetics, oligomer formation of single transmembrane helices, and protein-linked lipid chains. Finally, the interactions between integral proteins and peripheral or lipid-linked proteins, as reflected by the lipid-protein interactions in double reconstitutions, are considered.  相似文献   
117.
Targeting recycling endocytic receptors with specific Abs provides a means for introducing a variety of tumor-associated Ags into human dendritic cells (DCs), culminating in their efficient presentation to T cells. We have generated a human mAb (B11) against the mannose receptor that is rapidly internalized by DCs through receptor-mediated endocytosis. By genetically linking the melanoma Ag, pmel17, to Ab B11, we obtained the fully human fusion protein, B11-pmel17. Treatment of DCs with B11-pmel17 resulted in the presentation of pmel17 in the context of HLA class I and class II molecules. Thus, potent pmel17-specific T cells were cytotoxic toward gp100(+) HLA-matched melanoma targets, but not HLA-mismatched melanoma or gp100(-) nonmelanoma tumor lines. Importantly, competitive inhibition of lysis of an otherwise susceptible melanoma cell line by cold targets pulsed with known gp100 CD8 T cell epitopes as well as a dose-dependent proliferative response to Th epitopes demonstrates that DCs can process targeted Ag for activation of cytotoxic as well as helper arms of the immune response. Thus, the specific targeting of soluble exogenous tumor Ag to the DC mannose receptor directly contributes to the generation of multiple HLA-restricted Ag-specific T cell responses.  相似文献   
118.
Environmental stimuli during the perinatal period can result in persistent individual differences in neural viability and cognitive functions. Earlier studies have shown that brief daily maternal separation and/or handling of rat pups during the first weeks of life reduces stress reactivity during adulthood and attenuates neuronal loss and cognitive decline during aging. In the present study we examined whether neonatal handling also affects the sensitivity of the adult brain to an acute neurotoxic insult. Postnatally handled and nonhandled control rats were left undisturbed from weaning onwards until the age of 11 months. At this age, the animals were subjected to a neurotoxic challenge by unilateral infusion of 60 mM of the glutamate analogue N-methyl-D-aspartate (NMDA) into the nucleus basalis magnocellularis (NBM). The brains were collected to measure cholinergic cell and fiber loss. In the nonlesioned side of the brain, cholinergic cell number in the NBM and fiber density in the cortex were not different between postnatally handled and control rats. However, in the lesioned hemisphere handled animals exhibited a significantly higher loss of choline-acetyltransferase-immunoreactive and acetylcholinesterase-positive fibers in the somatosensory cortex. The present results provide evidence for an enhanced vulnerability of postnatally handled rats to acute neurodegeneration in contrast to the previously reported attenuation of spontaneous aging-related neurodegenerative processes.  相似文献   
119.
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.  相似文献   
120.
The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.Retrovirus assembly is driven by the oligomerization of Gag, a multidomain protein, including an N-terminal membrane binding domain (MA), a two-domain structural component (CA), and an RNA binding domain (NC). The Gag proteins of all orthoretroviruses, including the alpha-, beta-, and lentiretroviruses discussed here, share this conserved modular architecture (Fig. (Fig.1).1). Despite very weak sequence conservation, the tertiary structures of MA, CA, and NC are conserved among retroviruses. Outside these conserved domains the Gag proteins of different retroviruses exhibit substantial variability. Other domains may be present or absent, and the length and sequence of linker peptides may also vary (12) (Fig. (Fig.11).Open in a separate windowFIG. 1.Modular architecture of the full-length Gag proteins of HIV, M-PMV, and RSV. White rectangles illustrate Gag polyprotein cleavage products. The extent of the constructs used in the electron microscopic analysis is specified under each protein as a black rectangle. Gray triangles specify cleavage sites. Residue numbers are counted from the beginning of Gag.Oligomerization of Gag in an infected cell leads to the formation of roughly spherical immature virus particles, where Gag is arranged in a radial fashion with the N-terminal MA domain associated with a surrounding lipid bilayer, and the more C-terminal NC pointing toward the center of the particle (15, 44, 46). Subsequent multiple cleavages of Gag by the viral protease lead to a rearrangement of the virus. NC and the RNA condense in the center of the particle, CA assembles into a capsid or shell around the nucleoprotein, and MA remains associated with the viral membrane. This proteolytic maturation is required to generate an infectious virion (2). In contrast to the mature CA lattice, which has been extensively studied (11, 16, 36), the Gag lattice in immature particles is incompletely understood.Gag itself contains all of the necessary determinants for particle assembly. For example, the expression of Gag alone in an insect cell expression system is sufficient to generate viruslike particles (3, 17, 22, 38). Retroviral Gag proteins also can be assembled in vitro in the presence of nucleic acids to form spherical particles (9, 19, 39, 43, 47). The arrangement of Gag within these in vitro-assembled Gag particles is indistinguishable from that found in immature virus particles (6), and the in vitro assembly systems have proved valuable for unraveling the principles of virus assembly (18, 28, 29, 39). Multiple layers of interaction promote the assembly of Gag in vivo, including MA-membrane-MA interactions, CA-CA interactions, and NC-RNA-NC interactions. An extensive body of literature has explored which regions of Gag are required for assembly and which can be replaced or deleted without compromising assembly. MA-membrane-MA interactions contribute but are not essential. NC-RNA-NC interactions appear to function to nonspecifically link Gag molecules together and can be replaced both in vivo and in vitro by other interaction domains such as leucine zippers (4, 13, 20, 32, 48). The C-terminal domain of CA (referred to here as C-CA) and the stretch of amino acids immediately following this domain (termed the spacer peptide [SP] region) are critical for assembly and sensitive to mutation (1, 22, 27, 30).We set out to understand how the substantial sequence variation among Gag proteins in different retroviruses is manifested in structural differences in the immature Gag lattice. To do this, we studied three retroviruses from different genera: the lentivirus human immunodeficiency virus type 1 (HIV-1), the betaretrovirus Mason-Pfizer monkey virus (M-PMV), and the alpharetrovirus Rous sarcoma virus (RSV). These retroviruses are those for which in vitro assembly was first established and has been most extensively studied (6, 19, 24, 28, 29, 35, 43, 47).The domain structures of the three retroviruses differ most substantially upstream of CA. Both M-PMV and RSV have domains located between MA and CA that are absent in HIV (Fig. (Fig.1).1). In M-PMV there are 198 residues forming the pp24 and p12 domains; in RSV there are 84 residues forming the p2a, p2b, and p10 domains. The three retroviruses have different requirements for regions upstream of CA during assembly. The C-terminal 25 residues of p10 are essential for proper immature RSV assembly, both in vitro and in vivo, and these residues are inferred to interact directly with N-CA to stabilize the hexamer by forming contacts between adjacent N-CA domains (35). An equivalent assembly domain has not been described for other retroviruses. Within M-PMV p12 is the so-called internal scaffolding domain that is not essential for assembly in vitro (43) but is required for particle assembly when the precursor is expressed under the control of the M-PMV promoter (41). It is a key domain for the membrane-independent assembly of immature capsids (40).In HIV, five residues upstream of CA must be present for assembly of immature virus-like spherical particles in vitro, although larger upstream extensions, including part of MA, are required for efficient assembly of regular particles, both for HIV and RSV. For HIV, if the entire MA domain is included, in vitro assembly requires the presence of inositol penta- or hexakis phosphate (8). If no sequences upstream of CA are present, the in vitro particles in both of these viruses adopt a mature-type tubular morphology (10, 18). It has been hypothesized that cleavage at the N terminus of N-CA during maturation leads to the N-terminal residues of CA folding back into the N-CA structure to form a β-hairpin. The β-hairpin is important for assembly of the mature CA lattice, whereas its absence is important for immature assembly (23, 42). These requirements explain why, in HIV and RSV, immature Gag lattice-like structures are formed only if regions upstream of CA are present (18). In M-PMV, an immature Gag lattice can be produced when the regions upstream of CA are deleted if this is combined with mutations (such as deleting the initial proline of CA), which prevent β-hairpin formation (43).During maturation, HIV and RSV Gag proteins are cleaved twice between CA and NC to release a small peptide called SP1 or SP. In RSV the most N-terminal of these two cleavages can occur at one of two possible positions such that the released peptide is either 9 or 12 amino acids long (33). In M-PMV only one cleavage occurs between CA and NC, and no short peptide is produced. The region between the final helix of CA and the Zn fingers has been proposed to adopt a helical bundle architecture in HIV and RSV based on bioinformatic prediction, on mutational analysis, and on structural studies (1, 22, 27, 45). In all three viruses, C-CA and the residues immediately downstream are critical for assembly and are sensitive to mutation. C-CA contains the major homology region, a group of residues that are highly conserved across the retroviruses.Cryo-electron tomography (cET) studies of immature virus particles (6, 45) have resolved the electron density of the HIV Gag lattice in three dimensions at low resolution. Using these methods, we have also described the three-dimensional architecture of in vitro-assembled HIV Gag particles (6). In immature viruses and in vitro-assembled particles, Gag is seen to adopt an 8 nm hexameric lattice, as was predicted from previous Fourier analysis of two-dimensional images (7, 46). The hexameric lattice is interrupted by irregularly shaped holes and cracks in the lattice (6, 45). A similar observation has been made using AFM of in vitro-assembled particles of M-PMV Gag (26). These holes and cracks allow an otherwise planar hexameric lattice to form the surface of an approximately spherical particle.The radial positions of the MA, CA, and NC domains had been assigned previously from cryo-electron micrographs (44, 46). Based on these assignments and the shape of the density, the position and relative orientations of CA domains can be modeled into the low-resolution structure of the HIV lattice (6, 45). Density ascribed to the N-terminal domain of CA (N-CA) forms rings around large holes at the 6-fold symmetry positions in the lattice. Below this layer, at the expected radius of the C-CA, are 2-fold densities, interpreted as corresponding to dimers of C-CA. These densities are linked by rodlike densities, which descend into the NC-nucleic acid layer.HIV is the only retrovirus for which the arrangement of Gag in the immature particle has been described in three dimensions. Prior to this work, important open questions were therefore: which features of the arrangement of Gag are conserved between genera and therefore reflect general principles of Gag-Gag interactions, and which features are specific to certain genera? We have applied subtomogram averaging of cryo-electron tomograms to generate reconstructions of in vitro-assembled Gag particles from HIV, M-PMV, and RSV. These allow identification of the general and variable features of the arrangement of Gag and the architecture of immature retroviruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号