首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1673篇
  免费   108篇
  国内免费   1篇
  1782篇
  2022年   19篇
  2021年   24篇
  2020年   16篇
  2019年   14篇
  2018年   24篇
  2017年   20篇
  2016年   36篇
  2015年   69篇
  2014年   83篇
  2013年   93篇
  2012年   112篇
  2011年   104篇
  2010年   68篇
  2009年   77篇
  2008年   108篇
  2007年   103篇
  2006年   92篇
  2005年   87篇
  2004年   89篇
  2003年   89篇
  2002年   68篇
  2001年   24篇
  2000年   15篇
  1999年   14篇
  1998年   20篇
  1997年   12篇
  1996年   14篇
  1995年   16篇
  1994年   10篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   18篇
  1989年   7篇
  1988年   7篇
  1984年   8篇
  1982年   10篇
  1981年   10篇
  1980年   6篇
  1978年   6篇
  1977年   7篇
  1975年   8篇
  1972年   12篇
  1971年   8篇
  1969年   8篇
  1966年   6篇
  1964年   7篇
  1963年   9篇
  1962年   8篇
  1960年   7篇
排序方式: 共有1782条查询结果,搜索用时 15 毫秒
81.
Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.  相似文献   
82.
83.
Incubation of rocker-cultured neonatal rat heart cells with 3 mM L(+)-lactate led to a sharp increase in the sensitivity of cardiomyocytes to the beta-adrenergic agonist isoprenaline, as measured by their chronotropic response. This effect was accompanied by a reduction in the arachidonic acid content of the total phospholipids. The phospholipase A2-activator melittin as well as free arachidonic acid induced this supersensitivity to the same degree. On the other hand, the L(+)-lactate-evoked supersensitivity could be blocked by the phospholipase A2 inhibitors mepacrine and n-bromophenacyl-bromide, suggesting an involvement of phospholipase A2 in the process of beta-adrenergic sensitization. The sensitizing action of arachidonic acid was blocked by the lipoxygenase inhibitors esculetin and nordihydroguaiaretic acid, but not by the cyclooxygenase inhibitor indomethacin. Supersensitivity was likewise evoked by 15-S-hydroxyeicosatetraenoic acid (15-S-HETE), but not by 5-S-HPETE or 5-S-HETE. These findings suggest that the phospholipase A2-15-lipoxygenase pathway plays a role in the induction of beta-adrenergic supersensitivity in the cultured cardiomyocytes and point to a new physiological role of the lipoxygenase product 15-S-HETE.Abbreviations NDGA nordihydroguaiaretic acid - HETE hydroeicosatetraenoic acid - HPETE hydroperoxyeicosatetraenoic acid  相似文献   
84.
Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order mesenteric arteries of young (6 mo) and aged (24 mo) male Fischer-344 rats were selectively ligated for 3 wk to elevate blood flow in a first-order artery [high blood flow (HF)]. An in vitro study was then conducted on first-order arteries with HF and normal blood flow (NF) to assess shear stress (1, 10, and 20 dyn/cm(2))-induced release of NO into the perfusate. In HF arteries of both age groups, shear stress-induced NO production increased significantly. In 24-mo-old rats, the reduced shear stress-induced NO production in NF arteries was normalized by HF to a level similar to that in NF arteries of 6-mo-old rats. The increased NO production in HF arteries of 24-mo-old rats was associated with increased shear stress-induced dilation, expression of eNOS protein, and shear stress-induced eNOS phosphorylation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, reduced shear stress-induced eNOS phosphorylation and vasodilation. Superoxide production decreased significantly in HF compared with NF arteries in 24-mo-old rats. The decreased superoxide production was associated with significant increases in CuZn-SOD and extracellular SOD protein expressions and total SOD activity. These results suggest that stimulation with chronic HF restores shear-stress-induced activation of eNOS and antioxidant ability in aged arteries.  相似文献   
85.
RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double‐stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein–protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA‐induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre‐programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high‐molecular‐weight complex, suggesting the existence of a multi‐protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA–RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co‐expressed AGO1 in both the presence and absence of P0.  相似文献   
86.
The adaptation of the capacity of the intestinal peptide transporter PEPT1 to varying substrate concentrations may be important with respect to its role in providing bulk quantities of amino acids for growth, development, and other nutritional needs. In the present study, we describe a novel phenomenon of the regulation of PEPT1 in the Xenopus oocyte system. Using electrophysiological and immunofluorescence methods, we demonstrate that a prolonged substrate exposure of rabbit PEPT1 (rPEPT1) caused a retrieval of transporters from the membrane. Capacitance as a measure of membrane surface area was increased in parallel with the increase in rPEPT1-mediated transport currents with a slope of approximately 5% of basal surface per 100 nA. Exposure of oocytes to the model peptide Gly-l-Gln for 2 h resulted in a decrease in maximal transport currents with no change of membrane capacitance. However, exposure to substrate for 5 h decreased transport currents but also, in parallel, surface area by endocytotic removal of transporter proteins from the surface. The reduction of the surface expression of rPEPT1 was confirmed by presteady-state current measurements and immunofluorescent labeling of rPEPT1. A similar simultaneous decrease of current and surface area was also observed when endocytosis was stimulated by the activation of PKC. Cytochalasin D inhibited all changes evoked by either dipeptide or PKC stimulation, whereas the PKC-selective inhibitor bisindolylmaleimide only affected PKC-stimulated endocytotic processes but not substrate-dependent retrieval of rPEPT1. Coexpression experiments with human Na(+)-glucose transporter 1 (hSGLT1) revealed that substrate exposure selectively affected PEPT1 but not the activity of hSGLT1.  相似文献   
87.
Goldberg JH  Tamas G  Aronov D  Yuste R 《Neuron》2003,40(4):807-821
Dendritic spines receive excitatory synapses and serve as calcium compartments, which appear to be necessary for input-specific synaptic plasticity. Dendrites of GABAergic interneurons have few or no spines and thus do not possess a clear morphological basis for synapse-specific compartmentalization. We demonstrate using two-photon calcium imaging that activation of single synapses on aspiny dendrites of neocortical fast spiking (FS) interneurons creates highly localized calcium microdomains, often restricted to less than 1 microm of dendritic space. We confirm using ultrastructural reconstruction of imaged dendrites the absence of any morphological basis for this compartmentalization and show that it is dependent on the fast kinetics of calcium-permeable (CP) AMPA receptors and fast local extrusion via the Na+/Ca2+ exchanger. Because aspiny dendrites throughout the CNS express CP-AMPA receptors, we propose that CP-AMPA receptors mediate a spine-free mechanism of input-specific calcium compartmentalization.  相似文献   
88.
89.
Four known hydroxyanthraquinones ( 1–4 ) together with four new derivatives having a tetralone moiety, namely coniothyrinones A–D ( 5–8 ), were isolated from the culture of Coniothyrium sp., an endophytic fungus isolated from Salsola oppostifolia from Gomera in the Canary Islands. The structures of the new compounds were elucidated by detailed spectroscopic analysis and comparison with reported data. The absolute configurations of coniothyrinones A ( 5 ), B ( 6 ), and D ( 8 ) were determined by TDDFT calculations of CD spectra, allowing the determination of the absolute configuration of coniothyrinone C ( 7 ) as well. Coniothyrinones A ( 5 ), B ( 6 ), and D ( 8 ) could be used as ECD reference compounds in the determination of absolute configuration for related tetralone derivatives. This is the first report of anthraquinones and derivatives from an isolate of the genus Coniothyrium sp. These compounds showed inhibitory effects against the fungus Microbotryum violaceum, the alga Chlorella fusca, and the bacteria Escherichia coli and Bacillus megaterium. Chirality 25:141–148, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
90.
The general model of thermoregulation of ectotherms predicts that thermally challenging environments select for evolution of thermoconformity. Studies of reptilian thermoregulation at climatic extremes are rare and, in the subarctic zone, completely lacking. Thermal characteristics of the habitat of the lizard Zootoca vivipara were studied in the subarctic zone, at the northern margin of its distribution, where lizard density was already extremely low. We found that, during the activity period, the preferred body temperatures of Z. vivipara were not available for a thermoconformer, but available for 7 h for a thermoregulator in an average day. Therefore, thermoconformity is unbeneficial and accurate thermoregulation should be the appropriate strategy. We hypothesise that the extremely low lizard abundance at our subarctic study site is caused by the short activity season and the large daily temperature fluctuations, with night temperatures occasionally falling below zero even during the activity period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号