首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5132篇
  免费   398篇
  国内免费   491篇
  6021篇
  2024年   19篇
  2023年   76篇
  2022年   170篇
  2021年   242篇
  2020年   170篇
  2019年   205篇
  2018年   184篇
  2017年   152篇
  2016年   186篇
  2015年   298篇
  2014年   376篇
  2013年   377篇
  2012年   480篇
  2011年   446篇
  2010年   288篇
  2009年   244篇
  2008年   300篇
  2007年   256篇
  2006年   224篇
  2005年   198篇
  2004年   163篇
  2003年   165篇
  2002年   149篇
  2001年   61篇
  2000年   73篇
  1999年   67篇
  1998年   61篇
  1997年   50篇
  1996年   39篇
  1995年   46篇
  1994年   45篇
  1993年   25篇
  1992年   28篇
  1991年   19篇
  1990年   23篇
  1989年   25篇
  1988年   12篇
  1987年   5篇
  1986年   9篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1976年   3篇
  1972年   2篇
  1970年   2篇
  1968年   3篇
排序方式: 共有6021条查询结果,搜索用时 0 毫秒
51.
Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ.  相似文献   
52.
53.
54.
55.

Background and Aims

Great attention has been paid to N2O emissions from paddy soils under summer rice-winter wheat double-crop rotation, while less focus was given to the NO emissions. Besides, neither mechanism is completely understood. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O and NO emissions from the two soils at different soil moisture contents

Methods

N2O and NO emissions during one winter wheat season were simultaneously measured in situ in two rice-wheat based field plots at two different locations in Jiangsu Province, China. One soil was neutral in pH with silt loam texture (NSL), the other soil alkaline in pH with a clay texture (AC). A 15?N tracer incubation experiment was conducted in the laboratory to evaluate the relative importance of nitrification and denitrification for N2O and NO emissions at soil moisture contents of 40 % water holding capacity (WHC), 65 % WHC and 90 % WHC.

Results

Higher N2O emission rates in the AC soil than in the NSL soil were found both in the field and in the laboratory experiments; however, the differences in N2O emissions between AC soil and NSL soil were smaller in the field than in the laboratory. In the latter experiment, nitrification was observed to be the more important source of N2O emissions (>70 %) than denitrification, regardless of the soils and moisture treatments, with the only exception of the AC soil at 90 % WHC, at which the contributions of nitrification and denitrification to N2O emissions were comparable. The ratios of NO/N2O also supported the evidence that the nitrification process was the dominant source of N2O and NO both in situ and in the laboratory. The proportion of nitrified N emitted as N2O (P N2O ) in NSL soil were around 0.02 % in all three moisture treatments, however, P N2O in the AC soil (0.04 % to 0.10 %) tended to decrease with increasing soil moisture content.

Conclusions

Our results suggest that N2O emission rates obtained from laboratory incubation experiments are not suitable for the estimation of the true amount of N2O fluxes on a field scale. Besides, the variations of P N2O with soil property and soil moisture content should be taken into account in model simulations of N2O emission from soils.  相似文献   
56.
We cloned two genes coding F107-C and K88-1NT fimbrial subunits from strains E. coli C and 1NT isolated from Thua Thien Hue province, Vietnam. The mature peptide of faeG gene from strain E. coli 1NT (called faeG-1NT) is 100 % similarity with faeG gene, while the CDS of fedA gene from strain C (called fedA-C) has a similarity of 97 % with the fedA gene. Expression of the faeG-1NT and fedA-C genes in E. coli BL21 Star™ (DE3) produced proteins of ~31 and 22 kDa, respectively. The effect of IPTG concentration on the K88-1NT and F107-C fimbriae production was investigated. The results showed that 0.5 mM IPTG is suitable for higher expression of K88-1NT subunit, while 0.75 mM IPTG strongly stimulated expression of F107-C subunit. The optimal induction time for expression was also examined. Generally, highest expression of K88-1NT subunit occurred after 6 h of induction, while that of F107-C subunit is after 14 h.  相似文献   
57.
Co-stimulatory signaling pathway triggered by the binding of B7.1/B7.2 (CD80/86) of antigen-presenting cells (APCs) to CD28 of T cells is required for optimal T-cell activation. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a negative regulator of T cell activation, which competes with CD28 for B7.1/B7.2 binding with a greater affinity. Ipilimumab, a monoclonal antibody against CTLA-4, has shown positive efficacy in a pivotal clinical trial for the treatment of metastatic melanoma and was approved by FDA. However, the cost of monoclonal antibody-based therapeutics might limit the number of patients treated. To develop a novel therapeutics specifically targeting CTLA-4, we constructed a DNA vaccine by cloning the sequence of CTLA-4 fused with a transmembrane domain sequence of placental alkaline phosphatase (PLAP) into a mammalian expression plasmid, pVAC-1. Immunization with the resulting construct, pVAC-1-hCTLA-4, elicited antibody specific to human CTLA-4 with cross reactivity to murine CTLA-4, which was sufficient for inhibiting B16F10 tumor growth in c57BL/6 mice in the absence of measurable toxicity. Coupling liposome with pVAC-1-mCTLA-4 could break tolerance to self-antigen in BALB/c mice and induce potent immunity against murine CTLA-4, and suppress growth of subcutaneous renal cell carcinoma (Renca).  相似文献   
58.
59.
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27–36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.  相似文献   
60.
A novel naphthalene-2,3-diamine-2-salicylaldehyde (NS) ligand and its mononuclear copper(II) complex (CuNS) have been synthesized and structurally characterized. The UV–vis absorption and emission spectra of NS showed obvious changes on addition of Cu2+ solution. The interaction of the compounds with calf thymus DNA and G-quadruplex DNA were investigated by spectroscopic methods and thermal melting assay. The nucleolytic cleavage activity of the compounds was investigated on double-stranded circular pBR322 plasmid DNA and G-quadruplex DNA by electrophoretic mobility shift assay. The results show that CuNS has a greater ability to stabilize G-quadruplex DNA over calf-thymus DNA. The cytotoxicity of the compounds toward HpeG2 cancer cells was also studied, and they showed significant potential for antineoplastic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号