首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2734篇
  免费   241篇
  国内免费   420篇
  3395篇
  2024年   11篇
  2023年   59篇
  2022年   130篇
  2021年   231篇
  2020年   176篇
  2019年   183篇
  2018年   167篇
  2017年   128篇
  2016年   153篇
  2015年   234篇
  2014年   246篇
  2013年   238篇
  2012年   272篇
  2011年   224篇
  2010年   131篇
  2009年   114篇
  2008年   127篇
  2007年   90篇
  2006年   76篇
  2005年   64篇
  2004年   34篇
  2003年   42篇
  2002年   39篇
  2001年   25篇
  2000年   23篇
  1999年   22篇
  1998年   16篇
  1997年   21篇
  1996年   22篇
  1995年   8篇
  1994年   13篇
  1993年   3篇
  1992年   10篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   9篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有3395条查询结果,搜索用时 0 毫秒
101.
Muscle-eye-brain (MEB) disease is a congenital muscular dystrophy (CMD) phenotype characterized by hypotonia at birth, brain structural abnormalities and ocular malformations. To date, few MEB cases have been reported in China where clinical recognition and genetic confirmatory testing on a research basis are recent developments. Here, we report the clinical and molecular genetics of three MEB disease patients. The patients had different degrees of muscle, eye and brain symptoms, ranging from congenital hypotonia, early-onset severe myopia and mental retardation to mild weakness, independent walking and language problems. This confirmed the expanding phenotypic spectrum of MEB disease with varying degrees of hypotonia, myopia and cognitive impairment. Brain magnetic resonance imaging showed cerebellar cysts, hypoplasia and characteristic brainstem flattening and kinking. Four candidate genes (POMGnT1, FKRP, FKTN and POMT2) were screened, and six POMGnT1 mutations (four novel) were identified, including five missense and one splice site mutation. Pathogenicity of the two novel variants in one patient was confirmed by POMGnT1 enzyme activity assay, protein expression and subcellular localization of mutant POMGnT1 in HeLa cells. Transfected cells harboring this patient’s L440R mutant POMGnT1 showed POMGnT1 mislocalization to both the Golgi apparatus and endoplasmic reticulum. We have provided clinical, histological, enzymatic and genetic evidence of POMGnT1 involvement in three unrelated MEB disease patients in China. The identification of novel POMGnT1 mutations and an expanded phenotypic spectrum contributes to an improved understanding of POMGnT1 structure–function relationships, CMD pathophysiology and genotype–phenotype correlations, while underscoring the need to consider POMGnT1 in Chinese MEB disease patients.  相似文献   
102.
miRNA biogenesis enzyme Drosha cleaves double-stranded primary miRNA by interacting with double-stranded RNA binding protein DGCR8 and processes primary miRNA into precursor miRNA to participate in the miRNA biogenesis pathway. The role of Drosha in vascular smooth muscle cells (VSMCs) has not been well addressed. We generated Drosha conditional knockout (cKO) mice by crossing VSMC-specific Cre mice, SM22-Cre, with Drosha loxp/loxp mice. Disruption of Drosha in VSMCs resulted in embryonic lethality at E14.5 with severe liver hemorrhage in mutant embryos. No obvious developmental delay was observed in Drosha cKO embryos. The vascular structure was absent in the yolk sac of Drosha homozygotes at E14.5. Loss of Drosha reduced VSMC proliferation in vitro and in vivo. The VSMC differentiation marker genes, including αSMA, SM22, and CNN1, and endothelial cell marker CD31 were significantly downregulated in Drosha cKO mice compared to controls. ERK1/2 mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/AKT were attenuated in VSMCs in vitro and in vivo. Disruption of Drosha in VSMCs of mice leads to the dysregulation of miRNA expression. Using bioinformatics approach, the interactions between dysregulated miRNAs and their target genes were analyzed. Our data demonstrated that Drosha is required for VSMC survival by targeting multiple signaling pathways.  相似文献   
103.
104.
105.

The transforming growth factor-β (TGF-β) signaling pathway is conserved across animals, and knowledge of its roles during the molt cycle in crustaceans is presently very limited. This study investigates the roles of the TGF-β receptor in molting-related muscle growth in Eriocheir sinensis. Using the RT-PCR and RACE techniques, we obtained a 1722 bp cDNA sequence encoding a transforming growth factor-β type I receptor in Eriocheir sinensis, designated EsTGFBRI, which contains a 124 bp 5′-untranslated region, a 20 bp partial 3′-untranslated region and a 1578 bp open reading frame encoding 525 amino acids. The deduced EsTGFBRI contains an N-terminal 24 amino acid signal peptide, an activin type I and II receptor domain, a transmembrane helix region, a glycine-serine-rich motif, and a conserved serine/threonine kinase catalytic domain including an activation loop. The qRT-PCR results showed that EsTGFBRI gene was highly expressed in the intermolt testis and ovary in mature crabs. In juvenile crabs, the mRNA levels of EsTGFBRI in claw and abdominal muscles in the later premolt D3–4 stage were significantly higher than those in the intermolt C and postmolt A–B stages. There was no significant change in EsTGFBRI mRNA levels in walking leg muscles during the molt cycle. The results suggest that EsTGFBRI is probably play roles in molting-related muscle growth in E. sinensis. This study provides a necessary basis for elucidating the functions of TGF-β-like signaling mediated by TGFBRI in molting-related muscle growth in crustaceans.

  相似文献   
106.
HIV replication can be inhibited by CXCR5+CD8 T cells (follicular cytotoxic T cell [TFC]) which transfer into B-cell follicles where latent HIV infection persists. However, how cytokines affect TFC remain unclear. Understanding which cytokines show the ability to affect TFC could be a key strategy toward curing HIV. Similar mechanisms could be used for the growth and transfer of TFCs and follicular helper T (TFH) cells; as a result, we hypothesized that cytokines IL-6, IL-21, and transforming growth factor-β (TGF-β), which are necessary for the differentiation of TFH cells, could also dictate the development of TFCs. In this work, lymph node mononuclear cells and peripheral blood mononuclear cells from HIV-infected individuals were cocultured with IL-6, IL-21, and TGF-β. We then carried out T-cell receptor (TCR) repertoire analysis to compare the differences between CXCR5 and CXCR5+CD8 T cells. Our results showed that the percentage and function of TFC can be enhanced by stimulation with TGF-β. Besides, TGF-β stimulation enhanced the diversity of TCR and complementarity-determining region 3 sequences. HIV DNA showed a negative correlation with TFC. The use of TGF-β to promote the expression of CXCR5+CD8 T cells could become a new treatment approach for curing HIV.  相似文献   
107.
Aberrant activation of the Hedgehog (Hh)/Gli pathway contributes to the tumorigenesis of several human cancers, including ovarian cancers. We investigated the function of SMO on cell growth, drug resistance, and invasive ability in A2780/DDP cells. Moreover, we also tested the levels of the downstream target genes of the Hh/Gli pathway in SMO short hairpin RNA (shRNA) lentivirus-infected A2780/DDP cells. Western blot analysis results revealed that the Hh/Gli pathway was activated in cisplatin-resistant A2780/DDP cells. After infection by SMO shRNA lentivirus, the colony formation rate and invasive rate of cisplatin-resistant A2780/DDP cells were decreased. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that upon transfection with SMO shRNA, cell growth was decreased and drug sensitivity to cisplatin was upregulated. Moreover, interference with SMO decreased the expression of MMP-2, MMP-9, VEGF, and Snail in cisplatin-resistant cells. Thus, the Hh/Gli signaling pathway was aberrantly activated in A2780/DDP cells. The colony formation rate and invasive rate were decreased in SMO shRNA lentivirus–infected A2780/DDP cells. All results showed that inhibiting Hh/Gli signaling may negatively regulate the proliferation, invasion, and metastasis of cisplatin-resistant A2780/DDP cells, as well as increase the sensitivity of A2780/DDP to the chemotherapeutic drug of cisplatin.  相似文献   
108.
Tripartite motif containing 59 (TRIM59) functions as an oncoprotein in various human cancers including ovarian cancer. In this study, we found that TRIM59 gene amplification was prevalent in ovarian cancer tissues, and its amplification was significantly correlated with poorer overall survival. Moreover, knockdown of TRIM59 in SKOV3 and OVCAR3 cells, which had relatively high level of TRIM59, suppressed glucose uptake and lactate production. TRIM59 knockdown also decreased the expression of c-Myc and lactate dehydrogenase A, and the phosphorylation of extracellular signal-regulated kinase (ERK). TRIM59 overexpression in A2780 cells, which expressed low level of TRIM59, showed reverse effects. Notably, treatment with an ERK inhibitor (PD98059) completely abolished the oncogenic effects of TRIM59 overexpression. Interestingly, TRIM59 increased the ubiquitination of MAP kinase phosphatase 3 (MKP3), which may dephosphorylate and inactivate ERK. Ectopic expression of MKP3 inhibited the promoting effects of TRIM59 on glycolysis and the phosphorylation of ERK. TRIM59 protein expression was negatively correlated with MKP3 protein expression in ovarian cancer tissues. Finally, TRIM59 amplification potently affected the anticancer effect of 3-bromopyruvate, an inhibitor of glycolysis, in ovarian cancer cells and patient-derived xenograft. In conclusion, these results suggest that TRIM59 may regulate glycolysis in ovarian cancer via the MKP3/ERK pathway.  相似文献   
109.
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5′-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.  相似文献   
110.

Background

Campylobacter jejuni is an important food-borne and zoonotic pathogen with a worldwide distribution. Humans and chickens are hosts of this pathogen. At present, there is no ideal vaccine for controlling human campylobacteriosis or the carriage of C. jejuni by chickens. Bacterial in vivo-induced antigens are useful as potential vaccine candidates and biomarkers of virulence.

Methods

In this study, we developed a novel systematic immunoproteomics approach to identify in vivo-induced antigens among the total cell proteins of C. jejuni using pre-adsorbed sera from patients infected with C. jejuni.

Results

Overall, 14 immunoreactive spots were probed on a PVDF membrane using pre-adsorbed human sera against C. jejuni. Then, we excised these protein spots from a duplicate gel and identified using MALDI–TOF MS. In total, 14 in vivo-induced antigens were identified using PMF and BLAST analysis. The identified proteins include CadF (CadF-1 and CadF-2), CheW, TufB, DnaK, MetK, LpxB, HslU, DmsA, PorA, ProS, CJBH_0976, CSU_0396 and hypothetical protein cje135_05017. Real-time RT-PCR was performed on 9 genes to compare their expression levels in vivo and in vitro. The data showed that 8 of the 9 analyzed genes were significantly upregulated in vivo relative to in vitro.

Conclusion

We successfully developed a novel immunoproteomics method for identifying in vivo-induced Campylobacter jejuni antigens by using pre-adsorbed sera from infected patients.

General significance

This new analysis method may prove to be useful for identifying in vivo-induced antigens within any host infected by bacteria and will contribute to the development of new subunit vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号