Alicyclobacillus are spoilage microbes of many juice products, but contamination of kiwi products by Alicyclobacillus is seldom reported. This study aims to investigate the whole production line of kiwi products in China to assess the potential risk of their contamination. A total of 401 samples from 18 commercial products, 1 processing plant and 16 raw material orchards were tested, and 76 samples were positive, from which 76 strains of microbes were isolated and identified as 4 species of Alicyclobacillus, including Alicyclobacillus acidoterrestris, Alicyclobacillus contaminans, Alicyclobacillus herbarius and Alicyclobacillus cycloheptanicus, and another 9 strains as 3 species of Bacillus by sequencing of their 16S rDNA. Through phylogenetic tree construction and RAPD-PCR amplification, it was found that there exist genotypic diversities to some extent among these isolates. Four test strains (each from one species of the 4 Alicyclobacillus species isolated in this study) could spoil pH adjusted kiwi fruit juice and some commercial kiwi fruit products with producing guaiacol (11–34 ppb). 相似文献
Nitrite-dependent anaerobic methane oxidation (n-damo), catalyzed by microorganisms affiliated with bacterial phylum NC10, can have an important contribution to the reduction of the methane emission from anoxic freshwater sediment to the atmosphere. However, information on the variation of sediment n-damo organisms in reservoirs is still lacking. The present study monitored the spatial change of sediment n-damo organisms in the oligotrophic freshwater Xinfengjiang Reservoir (South China). Sediment samples were obtained from six different sampling locations and two sediment depths (0–5 cm, 5–10 cm). Sediment n-damo bacterial abundance was found to vary with sampling location and layer depth, which was likely influenced by pH and nitrogen level. The presence of the n-damo pmoA gene was found in all these samples. A remarkable shift occurred in the diversity and composition of sediment n-damo pmoA gene sequences. A variety of distinctively different n-damo pmoA clusters existed in reservoir sediments. The pmoA sequences affiliated with Candidatus Methylomirabilis oxyfera formed the largest group, while a significant proportion of the obtained n-damo pmoA gene sequences showed no close relationship to those from any known NC10 species. In addition, the present n-damo process was found in reservoir sediment, which could be enhanced by nitrite nitrogen amendment. 相似文献
Hydrobiologia - The disturbing effect of a short-term cooling period during summer on planktonic bacterial community structure of an alpine lake was investigated using 16S rDNA pyrosequencing.... 相似文献
Melanoma is the most malignant skin cancer with increasing incidence worldwide. Although innovative therapies such as BRAF inhibitor and immune checkpoint inhibitor have gained remarkable advances, metastatic melanoma remains an incurable disease for its notorious aggressiveness. Therefore, further clarification of the underlying mechanism of melanoma pathogenesis is critical for the improvement of melanoma therapy. Ubiquitination is an important regulatory event for cancer hallmarks and melanoma development, and the deubiquitinating enzymes including ubiquitin‐specific peptidase (USP) families are greatly implicated in modulating cancer biology. Herein, we first found that the expression of the deubiquitinase USP4 was significantly up‐regulated in melanoma tissues and cell lines. Furthermore, although USP4 knockdown had little impact on melanoma cell proliferation, it could increase the sensitivity to DNA damage agent cisplatin. We subsequently showed that USP4 regulated cisplatin‐induced cell apoptosis via p53 signalling. More importantly, USP4 could accentuate the invasive and migratory capacity of melanoma cells by promoting epithelial‐mesenchymal transition. Altogether, our results demonstrate that the up‐regulated USP4 plays an oncogenic role in melanoma by simultaneously suppressing stress‐induced cell apoptosis and facilitating tumour metastasis. 相似文献
Ginsengs, has long been used as one medicinal herb in China for more than two thousand years. Many studies have shown that ginsengs have preventive and therapeutic roles for cancer, and play a good complementary role in cancer treatment. Ginsenosides, as most important constituents of ginseng, have been extensively investigated and emphasized in cancer chemoprevention and therapeutics. However, the functional mechanism of Ginsenosides on cancer is not well known. This review will focus on introducing the functional mechanisms of ginsenosides and their metabolites, which regulate signaling pathways related with tumor growth and metastasis. Ginsenosides inhibit tumor growth via upregulating tumor apoptosis, inducing tumor cell differentiation and targeting cancer stem cells. In addition, Ginsenosides regulate tumor microenvironment via suppressing tumor angiogenesis-related proteins and pathways. Structural modification of ginsenosides and their administration alone or combinations with other Chinese medicines or chemical medicines have recently been developed to be a new therapeutic strategy for cancer. 相似文献
A series of fusion protein constructs were designed to investigate the contribution of secretory nascent chains to regulation of the ribosome–membrane junction in the mammalian endoplasmic reticulum. As a component of these studies, the membrane topology of the signal sequence was determined at stages of protein translocation immediately after targeting and before signal sequence cleavage. Truncated translation products were used to delimit the analysis to defined stages of translocation.
In a study of secretory protein precursors, formation of a protease-resistant ribosome–membrane junction, currently thought to define the pathway of the translocating nascent chain, was observed to be precursor- and stage-dependent. Analysis of the binding of early intermediates indicated that the nascent chain was bound to the membrane independent of the ribosome, and that the binding was predominately electrostatic. The membrane topology of the signal sequence was determined as a function of the stage of translocation, and was found to be identical for all assayed intermediates. Unexpectedly, the hydrophobic core of the signal sequence was observed to be accessible to the cytosolic face of the membrane at stages of translocation immediately after targeting as well as stages before signal sequence cleavage. Removal of the ribosome from bound intermediates did not disrupt subsequent translocation, suggesting that the active state of the protein-conducting channel is maintained in the absence of the bound ribosome. A model describing a potential mode of regulation of the ribosome–membrane junction by the nascent chain is presented.
Our study aims at developing an interferon-stimulated genes (ISGs) signature that could predict overall survival (OS) in cancer patients, which enrolled a total of 5643 pan-cancer patients. Linear models for microarray data method analysis were conducted to identify the differentially expressed prognostic genes in the global ISGs family. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival analysis were used to test the efficiency of a multi-gene signature in predicting the prognosis of pan-cancer patients. The prognostic performance and potential biological function of gene signature were verified by quantitative real-time PCR in a pan-cancer independent cohort. Three ISGs genes were finally identified to build a classifier, a specific risk score formula, with which patients were classified into the low- or high-risk groups. Time-dependent ROC analyses proved prognostic accuracy. Then, its prognostic value was validated in seven external validation series. A nomogram was constructed to guide the individualized treatment of patients with lung adenocarcinoma. Biological pathway and tumor immune infiltration analysis showed that the signature might cause poor prognosis by blocking NK cell activation. Finally, the signature in our centers was confirmed by real-time quantitative PCR. A robust ISGs-related feature was discovered to effectively classify pan-cancer patients into subgroups with different OS. 相似文献