首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965篇
  免费   62篇
  1027篇
  2023年   15篇
  2022年   17篇
  2021年   49篇
  2020年   29篇
  2019年   56篇
  2018年   47篇
  2017年   36篇
  2016年   54篇
  2015年   72篇
  2014年   77篇
  2013年   95篇
  2012年   91篇
  2011年   115篇
  2010年   69篇
  2009年   40篇
  2008年   34篇
  2007年   23篇
  2006年   35篇
  2005年   24篇
  2004年   24篇
  2003年   10篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有1027条查询结果,搜索用时 15 毫秒
91.
Eight new 5-arylidene-3-benzyl-thiazolidine-2,4-diones with halide groups on their benzyl rings were synthesized and assayed in vivo to investigate their anti-inflammatory activities. These compounds showed considerable biological efficacy when compared to rosiglitazone, a potent and well-known agonist of PPARγ, which was used as a reference drug. This suggests that the substituted 5-arylidene and 3-benzylidene groups play important roles in the anti-inflammatory properties of this class of compounds. Docking studies with these compounds indicated that they exhibit specific interactions with key residues located in the site of the PPARγ structure, which corroborates the hypothesis that these molecules are potential ligands of PPARγ. In addition, competition binding assays showed that four of these compounds bound directly to the ligand-binding domain of PPARγ, with reduced affinity when compared to rosiglitazone. An important trend was observed between the docking scores and the anti-inflammatory activities of this set of molecules. The analysis of the docking results, which takes into account the hydrophilic and hydrophobic interactions between the ligands and the target, explained why the 3-(2-bromo-benzyl)-5-(4-methanesulfonyl-benzylidene)-thiazolidine-2,4-dione compound had the best activity and the best docking score. Almost all of the stronger hydrophilic interactions occurred between the substituted 5-arylidene group of this compound and the residues of the binding site.  相似文献   
92.
Complexes of general formula [{CuX}2(YNC10H14O)] (X = Cl; Y = NHMe, NH2 or X = Br; Y = NH2) were synthesised from camphor hydrazone ligands (YNC10H14O) by reaction with the suitable copper(I) halide. Structural analysis by X-rays performed on a red crystal of [{CuCl}2(Me2NNC10H14O)] revealed that the complex is a one-dimensional copper polymer formed by two rather different copper units bridged by chloride. One of the copper units displays a tetrahedral geometry while the other is linear. Although the geometries and neighbourhoods of the two copper units are very different the oxidation state of the metal is the same, i.e. Cu(I) as corroborated by magnetic and electrochemical measurements.The ability of [{CuCl}2(Me2NNC10H14O)] to promote the activation of 4-pentyn-1-ol towards cyclization was studied under homogeneous or heterogeneous experimental conditions. The best results were obtained under homogeneous conditions at 40 °C.  相似文献   
93.
We have developed a novel three‐dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high‐throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox‐1, whose levels were also measured in situ using a GFP reporter system. In addition, the high‐throughput capacity of the platform was tested using a dual‐slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor‐4 (FGF‐4) on the pluripotency of mouse ES cells. This high‐throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses. Biotechnol. Bioeng. 2010; 106: 106–118. © 2010 Wiley Periodicals, Inc.  相似文献   
94.
A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.  相似文献   
95.
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.  相似文献   
96.
Treatment of F-actin with the peroxynitrite-releasing agent 3-morpholinosydnonimine (SIN-1) produced a dose-dependent F-actin depolymerization. This is due to released peroxynitrite because it is not produced by 'decomposed SIN-1', and it is prevented by superoxide dismutase concentrations efficiently preventing peroxynitrite formation. F-actin depolymerization has been found to be very sensitive to peroxynitrite, as exposure to fluxes as low as 50-100nM peroxynitrite leads to nearly 50% depolymerization in about 1h. G-actin polymerization is also impaired by peroxynitrite although with nearly 2-fold lower sensitivity. Exposure of F-actin to submicromolar fluxes of peroxynitrite produced cysteine oxidation and also a blockade of the ability of actin to stimulate myosin ATPase activity. Our results suggest that an imbalance of the F-actin/G-actin equilibrium can account for the observed structural and functional impairment of myofibrils under the peroxynitrite-mediated oxidative stress reported for some pathophysiological conditions.  相似文献   
97.
The movement of a conserved protein loop (the WPD-loop) is important in catalysis by protein tyrosine phosphatases (PTPs). Using kinetics, isotope effects, and X-ray crystallography, the different effects arising from mutation of the conserved tryptophan in the WPD-loop were compared in two PTPs, the human PTP1B, and the bacterial YopH from Yersinia. Mutation of the conserved tryptophan in the WPD-loop to phenylalanine has a negligible effect on k(cat) in PTP1B and full loop movement is maintained. In contrast, the corresponding mutation in YopH reduces k(cat) by two orders of magnitude and the WPD loop locks in an intermediate position, disabling general acid catalysis. During loop movement the indole moiety of the WPD-loop tryptophan moves in opposite directions in the two enzymes. Comparisons of mammalian and bacterial PTPs reveal differences in the residues forming the hydrophobic pocket surrounding the conserved tryptophan. Thus, although WPD-loop movement is a conserved feature in PTPs, differences exist in the molecular details, and in the tolerance to mutation, in PTP1B compared to YopH. Despite high structural similarity of the active sites in both WPD-loop open and closed conformations, differences are identified in the molecular details associated with loop movement in PTPs from different organisms.  相似文献   
98.
99.
In this study, polymerase chain reaction (PCR) reamplification of the first PCR product (2nd-PCR) and a qPCR assay were used to detect the sex determining region Y (SRY) gene from circulating cell-free fetal DNA (ccffDNA) in blood plasma of pregnant mares to determine fetal sex. The ccffDNA was isolated from plasma of 20 Thoroughbred mares (5-13 y old) in the final 3 mo of pregnancy (fetal sex was verified after foaling). For controls, plasma from two non-pregnant mares and two virgin mares were used, in addition to the non-template control. The 182 bp nucleotide sequence corresponding to the SRY-PCR product was confirmed by DNA sequencing. Based on SRY/PCR, 8 of 11 male and 9 of 9 female fetuses were correctly identified, resulting in a sensitivity of 72.7% (for male fetuses) and an overall accuracy of 85%. Furthermore, using SRY/2nd-PCR and qPCR techniques, sensitivity and accuracy were 90.9 and 95%, respectively. In conclusion, this study is apparently the first report of fetal sex determination in mares using ccffDNA.  相似文献   
100.
Intracellular pH (pH(in)) is a tightly regulated physiological parameter, which controls cell performance in all living systems. The purpose of this work was to evaluate if and how H(+) homeostasis is accomplished by an industrial wine strain of Saccharomyces cerevisiae while fermenting real must under the harsh winery conditions prevalent in the late stages of the fermentation process, in particular low pH and high ethanol concentrations and temperature. Cells grown at 15, 25, and 30°C were harvested in exponential and early and late stationary phases. Intracellular pH remained in the range of 6.0 to 6.4, decreasing significantly only by the end of glucose fermentation, in particular at lower temperatures (pH(in) 5.2 at 15°C), although the cells remained viable and metabolically active. The cell capability of extruding H(+) via H(+)-ATPase and of keeping H(+) out by means of an impermeable membrane were evaluated as potential mechanisms of H(+) homeostasis. At 30°C, H(+) efflux was higher in all stages. The most striking observation was that cells in late stationary phase became almost impermeable to H(+). Even when these cells were challenged with high ethanol concentrations (up to 20%) added in the assay, their permeability to H(+) remained very low, being almost undetectable at 15°C. Comparatively, ethanol significantly increased the H(+) permeability of cells in exponential phase. Understanding the molecular and physiological events underlying yeast H(+) homeostasis at late stages of fermentations may contribute to the development of more robust strains suitable to efficiently produce a high-quality wine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号