首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54886篇
  免费   4632篇
  国内免费   36篇
  59554篇
  2023年   268篇
  2022年   579篇
  2021年   1053篇
  2020年   770篇
  2019年   835篇
  2018年   1203篇
  2017年   1003篇
  2016年   1638篇
  2015年   2346篇
  2014年   2305篇
  2013年   2878篇
  2012年   3425篇
  2011年   3158篇
  2010年   1928篇
  2009年   1869篇
  2008年   2287篇
  2007年   2267篇
  2006年   2060篇
  2005年   2373篇
  2004年   2349篇
  2003年   1960篇
  2002年   1581篇
  2001年   1463篇
  2000年   1392篇
  1999年   1247篇
  1998年   570篇
  1997年   542篇
  1996年   593篇
  1995年   460篇
  1994年   467篇
  1993年   438篇
  1992年   934篇
  1991年   834篇
  1990年   769篇
  1989年   764篇
  1988年   758篇
  1987年   689篇
  1986年   648篇
  1985年   626篇
  1984年   584篇
  1983年   443篇
  1982年   339篇
  1981年   335篇
  1980年   316篇
  1979年   437篇
  1978年   363篇
  1977年   298篇
  1975年   299篇
  1974年   302篇
  1973年   300篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.  相似文献   
972.
The binding of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein to the angiotensin‐converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high‐affinity and cost‐effective ACE2 mimetic ligands that disrupt this protein–protein interaction is a promising strategy for viral diagnostics and therapy. We employed human and plant defensins, a class of small (2–5 kDa) and highly stable proteins containing solvent‐exposed alpha‐helix, conformationally constrained by two disulfide bonds. Therefore, we engineered the amino acid residues on the constrained alpha‐helix of defensins to mimic the critical residues on the ACE2 helix 1 that interact with the SARS‐CoV‐2 spike protein. The engineered proteins (h‐deface2, p‐deface2, and p‐deface2‐MUT) were soluble and purified to homogeneity with a high yield from a bacterial expression system. The proteins demonstrated exceptional thermostability (Tm 70.7°C), high‐affinity binding to the spike protein with apparent K d values of 54.4 ± 11.3, 33.5 ± 8.2, and 14.4 ± 3.5 nM for h‐deface2, p‐deface2, and p‐deface2‐MUT, respectively, and were used in a diagnostic assay that detected SARS‐CoV‐2 neutralizing antibodies. This work addresses the challenge of developing helical ACE2 mimetics by demonstrating that defensins provide promising scaffolds to engineer alpha‐helices in a constrained form for designing of high‐affinity ligands.  相似文献   
973.
974.
BackgroundThis study aimed to assess the prevalence of Bartonella sp.-DNA detection in blood and skin samples from patients with non-viral end-stage liver disease awaiting liver transplantation.Methodology/Principal findingsBlood samples and healthy skin fragments from 50 patients were tested using microbiological and molecular methods. Fifteen patients had cryptogenic hepatitis (CH) and 35 had alcoholic, drug-induced or autoimmune liver disease. DNA was extracted from whole blood and liquid culture samples, isolates, and skin fragments. Thirteen of the 50 patients (26%) had Bartonella henselae DNA detection in their blood (9/50) and/or skin (5/50) samples. Colonies were isolated in 3/50 (6%) and infection was detected in 7/50 (14%) of the 50 patients. B. henselae-DNA detection was more prevalent in patients with CH than in other patients (p = 0.040). Of 39 patients followed-up for at least two years, a higher mortality rate was observed among patients with CH infected with B. henselae (p = 0.039).Conclusions/SignificanceFurther studies assessing the role of B. henselae infection in the pathogenesis of hepatitis patients must be urgently conducted.  相似文献   
975.
976.
977.
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.  相似文献   
978.
Hoogsteen (HG) base pairing is characterized by a 180° rotation of the purine base with respect to the Watson-Crick-Franklin (WCF) motif. Recently, it has been found that both conformations coexist in a dynamical equilibrium and that several biological functions require HG pairs. This relevance has motivated experimental and computational investigations of the base-pairing transition. However, a systematic simulation of sequence variations has remained out of reach. Here, we employ advanced path-based methods to perform unprecedented free-energy calculations. Our methodology enables us to study the different mechanisms of purine rotation, either remaining inside or after flipping outside of the double helix. We study seven different sequences, which are neighbor variations of a well-studied A⋅T pair in A6-DNA. We observe the known effect of A⋅T steps favoring HG stability, and find evidence of triple-hydrogen-bonded neighbors hindering the inside transition. More importantly, we identify a dominant factor: the direction of the A rotation, with the 6-ring pointing either towards the longer or shorter segment of the chain, respectively relating to a lower or higher barrier. This highlights the role of DNA’s relative flexibility as a modulator of the WCF/HG dynamic equilibrium. Additionally, we provide a robust methodology for future HG proclivity studies.  相似文献   
979.
Influenza A virus (IAV) preferentially infects conducting airway and alveolar epithelial cells in the lung. The outcome of these infections is impacted by the host response, including the production of various cytokines, chemokines, and growth factors. Fibroblast growth factor-9 (FGF9) is required for lung development, can display antiviral activity in vitro, and is upregulated in asymptomatic patients during early IAV infection. We therefore hypothesized that FGF9 would protect the lungs from respiratory virus infection and evaluated IAV pathogenesis in mice that overexpress FGF9 in club cells in the conducting airway epithelium (FGF9-OE mice). However, we found that FGF9-OE mice were highly susceptible to IAV and Sendai virus infection compared to control mice. FGF9-OE mice displayed elevated and persistent viral loads, increased expression of cytokines and chemokines, and increased numbers of infiltrating immune cells as early as 1 day post-infection (dpi). Gene expression analysis showed an elevated type I interferon (IFN) signature in the conducting airway epithelium and analysis of IAV tropism uncovered a dramatic shift in infection from the conducting airway epithelium to the alveolar epithelium in FGF9-OE lungs. These results demonstrate that FGF9 signaling primes the conducting airway epithelium to rapidly induce a localized IFN and proinflammatory cytokine response during viral infection. Although this response protects the airway epithelial cells from IAV infection, it allows for early and enhanced infection of the alveolar epithelium, ultimately leading to increased morbidity and mortality. Our study illuminates a novel role for FGF9 in regulating respiratory virus infection and pathogenesis.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号