首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
  66篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1981年   3篇
  1977年   1篇
  1970年   1篇
排序方式: 共有66条查询结果,搜索用时 0 毫秒
61.
The effects of ecosystem engineers can be mediated by direct and indirect interactions. For suspension-feeding bivalves that contribute to benthic-pelagic coupling, indirect effects have been linked to hydrodynamics; however, the influence of these ecosystem engineers may also operate through interactions with surrounding sediments, microphytes and macrofauna that, in turn, affect nutrient and oxygen fluxes. This study investigated the indirect effects of an epibenthic suspension-feeding bivalve (Atrina zelandica) on ammonium and nitrate-nitrite effluxes from the sediment, and oxygen consumption in the overlying waters, under dark conditions, at two sites with different environmental characteristics. Location-dependent effects were observed in the relative strength of the effect of Atrina on microphyte and macrofaunal abundance. The difference between the strength of the effect of Atrina on macrofauna between sites was not driven by a single species or type of species; rather all the species decreasing in abundance away from Atrina were small species that utilised the sediment water interface. Location-dependent effects were also observed in the relative strength of the effect of microphyte and macrofaunal abundance on oxygen and nutrient fluxes. While microphytes were an important consumer of oxygen at one site, at the other site, small infaunal macrofauna were important. Similarly, the strength of the effect of surrounding macrofauna on ammonium efflux varied between sites. These findings demonstrate the importance of natural history and species functions for understanding complex responses. They suggest that indirect effects by key benthic macrofaunal species in marine systems can also be important to benthic-pelagic coupling. In particular, while key species are often large, excretion and respiration of smaller macrofauna can be important to the exchange of nutrients near the seafloor and oxygen consumption in the benthic boundary layer.  相似文献   
62.
The degradation of ecosystems is often associated with losses of large organisms and the concomitant losses of the ecological functions they mediate. Conversely, the resilience of ecosystems to stress is strongly influenced by faunal communities and their impacts on processes. Denitrification in coastal sediments is a process that may provide ecosystem resilience to eutrophication by removing excess bioavailable nitrogen. Here, we conducted a large-scale field experiment to test the effect of macrofaunal community composition on denitrification in response to two levels of nutrient enrichment at 28 sites across a biologically heterogeneous sandflat. After 7 weeks of enrichment, we measured denitrification enzyme activity (DEA) along with benthic macrofaunal community composition and environmental variables. We normalised treatment site specific DEA values by those in ambient sediments (DEACN) to reveal the underlying response across the heterogeneous landscape. Nutrient enrichment caused reductions in DEACN as well as functional changes in the community; these were both more pronounced under the highest level of nutrient loading (on average DEACN was reduced by 34%). The degree of suppression of DEACN following moderate nitrogen loading was mitigated by a key bioturbating species, but following high nitrogen loading (which reduced the key species density) the abundance and diversity of other nutrient processing species were the most important factors alleviating negative effects. This study provides a prime example of the context-dependent role of biodiversity in maintaining ecosystem functioning, underlining that different elements of biodiversity can become important as stress levels increase. Our results emphasise that management and conservation strategies require a real-world understanding of the community attributes that facilitate nutrient processing and maintain resilience in coastal ecosystems.  相似文献   
63.
64.
A consequence assessment framework was developed to evaluate the economic and environmental consequences of an exotic disease in the context of supporting policy level decisions on mitigation strategies. The framework adopted a semi-qualitative analysis of impacts supported by expert judgement. The efficacy of the framework was illustrated via assessment of the notifiable fish disease, Gyrodactylus salaris. In this example, the economic cost of an illustrative outbreak of G. salaris ranged from £0.22 million to £90 million. The cost of the most likely scenario (regional spread) was estimated to be £7.5 million (minimum to maximum range of £2–22 million), reflecting the uncertainty in the extent of spread of the parasite before detection. The environmental impacts vary by a factor of 35 between incursion scenarios reflecting the number of affected catchments in the scenarios.  相似文献   
65.
66.
Ellis  J.I.  Schneider  D.C.  Thrush  S.F. 《Hydrobiologia》2000,440(1-3):379-391
Demonstrating spatial or temporal gradients of effects on macrobenthic communities can be a useful way of providing strong empirical evidence of natural or anthropogenic disturbance. Gradient designs for environmental assessment are sensitive to change for point source data, enabling the scale of the effects of a disturbance to be readily identified. If the spatial scale that is sampled from the point source is adequate, problems of selecting control sites can be avoided. However, sources of spatial variation in macrobenthic communities, which are not related to the impact, can confound the use of gradient designs. This can occur if the natural spatial structure overlaps that of the gradient and cannot be identified either as a location or environmental covariable. The ability to detect point source impacts using a gradient design against natural spatial variability was tested using benthic macrofaunal data collected from Manukau Harbour, New Zealand. Treated sewage wastewater is discharged into the north-west area of the Manukau Harbour. Sandflats in the vicinity of the outfall are also subject to physical disturbance from wind-waves and strong tides. Ordination techniques and the testing of a priori predictions were used to try and separate the relative effects of organic and physical disturbance on the benthic communities. While the occurrence of other environmental disturbances along a gradient of anthropogenic disturbance makes interpretation of community pattern more difficult, the use of a gradient sampling layout, ordination analysis and the testing of a priori predictions enabled impacts of the anthropogenic and natural environmental disturbances to be interpreted. Gradient designs, therefore, provide a method of assessing complex impacts that operate over broad spatial and temporal scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号