首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   14篇
  2021年   2篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   10篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1971年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
71.
The epidermal growth factor receptor (EGFR) is important for normal homeostasis in a variety of tissues and, when abnormally expressed or mutated, contributes to the development of many diseases. However, in vivo functional studies are hindered by the lack of adult mice lacking EGFR because of the pre‐ and postnatal lethality of EGFR deficient mice. We generated a conditional allele of Egfr (Egfrtm1Dwt) by flanking exon 3 with loxP sites in order to investigate tissue‐specific functions of this widely expressed receptor tyrosine kinase. The activity of the Egfrtm1Dwt allele is indistinguishable from wildtype Egfr. Conversely, the EgfrΔ allele, generated by Cre‐mediated deletion of exon 3 using the germline EIIa‐Cre transgenic line, functions as a null allele. EgfrΔ/Δ embryos that have complete ablation of EGFR activity and die at mid‐gestation with placental defects identical to those reported for mice homozygous for the Egfrtm1Mag null allele. We also inactivated the Egfrtm1Dwt allele tissue‐specifically in the skin epithelium using the K14‐Cre transgenic line. These mice were viable but exhibited wavy coat hair remarkably similar to mice homozygous for the Egfrwa2 hypomorphic allele or heterozygous for the EgfrWa5 antimorphic allele. These results suggest that the hairless phenotype of Egfr nullizygous mice is not solely due to absence of EGFR in the epithelium, but that EGFR activity is required also in skin stromal cells for normal hair morphogenesis. This new mouse model should have wide utility to inactivate Egfr conditionally for functional analysis of EGFR in adult tissues and disease states. genesis 47:85–92, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
72.
73.
High dietary fat intake and obesity may increase the risk of susceptibility to certain forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary cancer, we created a population of F2 mice cosegregating obesity QTL and the MMTV-PyMT transgene. We fed the F2 mice either a very high-fat or a matched-control-fat diet, and we measured growth, body composition, age at mammary tumor onset, tumor number and severity, and formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses of QTL and QTL × diet interaction effects. Here we describe effects of diet on mammary tumor and metastases phenotypes, mapping of tumor/metastasis modifier genes, and the interaction between dietary fat levels and effects of cancer modifiers. Results demonstrate that animals fed a high-fat diet are not only more likely to experience decreased mammary cancer latency but increased tumor growth and pulmonary metastases occurrence over an equivalent time. We identified 25 modifier loci for mammary cancer and pulmonary metastasis, likely representing 13 unique loci after accounting for pleiotropy, and novel QTL × diet interactions at a majority of these loci. These findings highlight the importance of accurately modeling not only the human cancer characteristics in mice but also the environmental exposures of human populations.  相似文献   
74.
We describe a new approach, called recombinant inbred intercross (RIX) mapping, that extends the power of recombinant inbred (RI) lines to provide sensitive detection of quantitative trait loci (QTL) responsible for complex genetic and nongenetic interactions. RIXs are generated by producing F1 hybrids between all or a subset of parental RI lines. By dramatically extending the number of unique, reproducible genomes, RIXs share some of the best properties of both the parental RI and F2 mapping panels. These attributes make the RIX method ideally suited for experiments requiring analysis of multiple parameters, under different environmental conditions and/or temporal sampling. However, since any pair of RIX genomes shares either one or no parental RIs, this cross introduces an unusual population structure requiring special computational approaches for analysis. Herein, we propose an efficient statistical procedure for QTL mapping with RIXs and describe a novel empirical permutation procedure to assess genome-wide significance. This procedure will also be applicable to diallel crosses. Extensive simulations using strain distribution patterns from CXB, AXB/BXA, and BXD mouse RI lines show the theoretical power of the RIX approach and the analysis of CXB RIXs demonstrates the limitations of this procedure when using small RI panels.  相似文献   
75.
Robson, G. D., Prebble, E., Rickers, A., Hosking, S., Denning, D. W., Trinci, A. P. J., and Robertson, W. 1996. Polarized growth of fungal hyphae is defined by an alkaline pH gradient. Fungal Genetics and Biology 20, 289-298. Polarized cell growth is exhibited by a diverse range of eukaryotic and prokaryotic cells. The events which are responsible for this growth are poorly understood. However, the existence of ion gradients may play an important role in establishing and driving cell polarity. Using a pH-sensitive, ratiometric fluorescent dye to monitor intracellular pH in growing fungal hyphae, we report a gradient at the extending hyphal tip that is up to 1.4 pH units more alkaline than more distal regions. Both the magnitude and the length of the pH gradient were strongly correlated with the rate of hyphal extension and eradication of the gradient-arrested growth. These results suggest that alkaline pH gradients may be integral to hyphal extension in fungi.  相似文献   
76.
D S Threadgill  J E Womack 《Genomics》1991,11(4):1143-1148
Homologs to genes residing on human chromosome 3 (HSA 3) map to four mouse chromosomes (MMU) 3, 6, 9, and 16. In the bovine, two syntenic groups that contain HSA 3 homologs, unassigned syntenic groups 10 (U10) and 12 (U12), have been defined. U10 also contains HSA 21 genes, which is similar to the situation seen on MMU 16, whereas U12 apparently contains only HSA 3 homologs. The syntenic arrangement of other HSA 3 homologs in the bovine was investigated by physically mapping five genes through segregation analysis of a bovine-hamster hybrid somatic cell panel. The genes mapped include Friend-murine leukemia virus integration site 3 homolog (FIM3; HSA 3/MMU 3), sucrase-isomaltase (SI) and glutathione peroxidase 1 (GPX1) (HSA 3/MMU ?), murine leukemia viral (v-raf-1) oncogene homolog 1 (RAF1; HSA 3/MMU 6), and ceruloplasmin (CP; HSA 3/MMU 9). FIM3, SI, and CP mapped to bovine syntenic group U10, while RAF1 and GPX1 mapped to U12.  相似文献   
77.
Bovine X hamster and bovine X mouse hybrid somatic cells have been used to investigate the syntenic relationship of nine loci in the bovine that have homologous loci on human chromosome 12. Eight loci, including A2M, GLI, HOX3, IFNG, INT1, KRAS2, NKNB, and PAH, were assigned to the previously identified bovine syntenic group U3 represented by GAPD. However, a single locus from the q-terminus of HSA 12, ALDH2, mapped to a new, previously unidentified autosomal syntenic group. These results indicate the existence of a very large ancestral syntenic group spanning from the p-terminus to q24 of HSA 12 and containing over 4% of the mammalian genome. Additionally, the results predict that ALDH2 is distal to PAH and IFNG on HSA 12, the type II keratin gene complex will reside between q11 and q21 of HSA 12, A2M will map to MMU 6, and LALBA and GLI will map to MMU 15.  相似文献   
78.
Isometric tension and isotonic shortening were measured at constant levels of calcium activation of varying magnitude in mechanically disrupted EGTA-treated ventricular bundles from guinea pigs. The results were as follows: (a) The effect of creatine phosphate (CP) on peak tension and rate of shortening saturated at a CP concentration more than 10 mM; below that level tension was increased and shortening velocity decreased. We interpreted this to mean that CP above 10 mM was sufficient to buffer MgATP(2-) intracellularly. (b) The activated bundles exhibited an exponential stress-strain relationship and the series elastic properties did not vary appreciably with degree of activation or creatine phosphate level. (c) At a muscle length 20 percent beyond just taut, peak tension increased with Ca(2+) concentration over the range slightly below 10(-6) to slightly above 10(-4)M. (d) By releasing the muscle length-active tension curves were constructed. Force declined to 20 percent peak tension with a decrease in muscle length (after the recoil) of only 11 percent at 10(-4)M Ca(2+) and 6 percent at 4x10(-6)M Ca(2+). (e) The rate of shortening after a release was greater at lower loads. At identical loads (relative to maximum force at a given Ca(2+) level), velocity at a given time after the release was less at lower Ca(2+) concentrations; at 10 M(-5), velocity was 72 percent of that at 10(-4)M, and at 4x10(-6)M, active shortening was usually delayed and was 40 percent of the velocity at 10(-4) M. Thus, under the conditions of these experiments, both velocity and peak tension depend on the level of Ca(2+) activation over a similar range of Ca(2+) concentration.  相似文献   
79.
Left ventricular hypertrophy (LVH), a risk factor for cardiovascular morbidity and mortality, is commonly caused by essential hypertension. Three geometric patterns of LVH can be induced by hypertension: concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. Clinical studies suggest that different underlying etiologies, genetic modifiers, and risk of mortality are associated with LVH geometric patterns. Since pressure overload-induced LVH can be modeled experimentally using transverse aortic constriction (TAC) and since C57BL/6J (B6) and 129S1/SvImJ (129S1) strains, which have different baseline cardiovascular phenotypes, are commonly used, we conducted serial echocardiographic studies to assess cardiac function up to 8 wk of post-TAC in male B6, 129S1, and B6129F1 (F1) mice. B6 mice had an earlier onset and more pronounced impairment in contractile function, with corresponding left and right ventricular dilatation, fibrosis, change in expression of hypertrophy marker, and increased liver weights at 5 wk of post-TAC. These observations suggest that B6 mice had eccentric hypertrophy with systolic dysfunction and right-sided heart failure. In contrast, we found that 129S1 and F1 mice delayed transition to decompensated heart failure, with 129S1 mice exhibiting preserved systolic function until 8 wk of post-TAC and relatively mild alterations in histology and markers of hypertrophy at 5 wk post-TAC. Consistent with concentric hypertrophy, our results show that these strains manifest different cardiac responses to pressure overload in a time-dependent manner and that genetic susceptibility to initial concentric hypertrophy is dominant to eccentric hypertrophy. These results also imply that genetic background differences can complicate interpretation of TAC studies when using mixed genetic backgrounds.  相似文献   
80.
Mouse genetic resources include inbred strains, recombinant inbred lines, chromosome substitution strains, heterogeneous stocks, and the Collaborative Cross (CC). These resources were generated through various breeding designs that potentially produce different genetic architectures, including the level of diversity represented, the spatial distribution of the variation, and the allele frequencies within the resource. By combining sequencing data for 16 inbred strains and the recorded history of related strains, the architecture of genetic variation in mouse resources was determined. The most commonly used resources harbor only a fraction of the genetic diversity of Mus musculus, which is not uniformly distributed thus resulting in many blind spots. Only resources that include wild-derived inbred strains from subspecies other than M. m. domesticus have no blind spots and a uniform distribution of the variation. Unlike other resources that are primarily suited for gene discovery, the CC is the only resource that can support genome-wide network analysis, which is the foundation of systems genetics. The CC captures significantly more genetic diversity with no blind spots and has a more uniform distribution of the variation than all other resources. Furthermore, the distribution of allele frequencies in the CC resembles that seen in natural populations like humans in which many variants are found at low frequencies and only a minority of variants are common. We conclude that the CC represents a dramatic improvement over existing genetic resources for mammalian systems biology applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号