首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   9篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   7篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1948年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
61.
The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome formation in hematopoietic cells. Given that 80% of identified Wiskott-Aldrich Syndrome patients result from mutations in the binding site for WASP-interacting-protein (WIP), we examined the possible role of WIP in the regulation of podosome architecture and cell motility in dendritic cells (DCs). Our results show that WIP is essential both for the formation of actin cores containing WASP and cortactin and for the organization of integrin and integrin-associated proteins in circular arrays, specific characteristics of podosome structure. We also found that WIP is essential for the maintenance of the high turnover of adhesions and polarity in DCs. WIP exerts these functions by regulating calpain-mediated cleavage of WASP and by facilitating the localization of WASP to sites of actin polymerization at podosomes. Taken together, our results indicate that WIP is critical for the regulation of both the stability and localization of WASP in migrating DCs and suggest that WASP and WIP operate as a functional unit to control DC motility in response to changes in the extracellular environment.  相似文献   
62.
Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.  相似文献   
63.
64.
In November of 2007 a human adenovirus (HAdV) was isolated from a bronchoalveolar lavage (BAL) sample recovered from a biopsy of an AIDS patient who presented with fever, cough, tachycardia, and expiratory wheezes. To better understand the isolated virus, the genome was sequenced and analyzed using bioinformatic and phylogenomic analysis. The results suggest that this novel virus, which is provisionally named HAdV-D59, may have been created from multiple recombination events. Specifically, the penton, hexon, and fiber genes have high nucleotide identity to HAdV-D19C, HAdV-D25, and HAdV-D56, respectively. Serological results demonstrated that HAdV-D59 has a neutralization profile that is similar yet not identical to that of HAdV-D25. Furthermore, we observed a two-fold difference between the ability of HAdV-D15 and HAdV-D25 to be neutralized by reciprocal antiserum indicating that the two hexon proteins may be more similar in epitopic conformation than previously assumed. In contrast, hexon loops 1 and 2 of HAdV-D15 and HAdV-D25 share 79.13 and 92.56 percent nucleotide identity, respectively. These data suggest that serology and genomics do not always correlate.  相似文献   
65.
66.
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号