首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2175篇
  免费   220篇
  国内免费   3篇
  2023年   12篇
  2022年   17篇
  2021年   45篇
  2020年   14篇
  2019年   42篇
  2018年   37篇
  2017年   30篇
  2016年   64篇
  2015年   101篇
  2014年   120篇
  2013年   135篇
  2012年   191篇
  2011年   167篇
  2010年   117篇
  2009年   115篇
  2008年   137篇
  2007年   133篇
  2006年   130篇
  2005年   146篇
  2004年   123篇
  2003年   112篇
  2002年   95篇
  2001年   29篇
  2000年   30篇
  1999年   23篇
  1998年   19篇
  1997年   13篇
  1996年   14篇
  1995年   15篇
  1994年   7篇
  1993年   12篇
  1992年   9篇
  1991年   12篇
  1990年   12篇
  1989年   11篇
  1988年   6篇
  1987年   15篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1975年   9篇
  1974年   5篇
  1973年   8篇
  1972年   3篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
51.
The burnet moth Zygaena anthyllidis, endemic to the high elevations of the Pyrenees, is vulnerable to land-use. In order to identify conservation priorities based on an assessment of genetic diversity within populations and gene flow among populations, we examined Z. anthyllidis’ genetic variability and differentiation based on allozyme electrophoresis from seven populations scattered across its entire range. In comparison to other mountain Lepidoptera, the populations studied exhibit a low level of genetic diversity. Remarkable between-population differentiation (F ST = 0.053), the presence of private alleles, and the lack of significant isolation-by-distance pattern characterises the genetic make-up of the species. We interpreted the pattern of genetic differentiation as a consequence of low dispersal power in combination with insufficient landscape connectivity. Ongoing land-use change might reinforce genetic differentiation due to habitat fragmentation and additionally affect negatively allozyme variability at shifting range margins, i.e. the capacity to adapt to changing environments. We therefore suggest creating a network of suitable habitats at the landscape scale to facilitate genetic exchange and to conserve the species’ overall genetic variability.  相似文献   
52.
Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in order to target mitochondria.  相似文献   
53.
Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.  相似文献   
54.
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach.  相似文献   
55.
Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism.  相似文献   
56.
The eastern oyster (Crassostrea virginica) has become a useful model system for glycan-dependent host-parasite interactions due to the hijacking of the oyster galectin CvGal1 for host entry by the protozoan parasite Perkinsus marinus, the causative agent of Dermo disease. In this study, we examined the N-glycans of both the hemocytes, which via CvGal1 are the target of the parasite, and the plasma of the oyster. In combination with HPLC fractionation, exoglycosidase digestion, and fragmentation of the glycans, mass spectrometry revealed that the major N-glycans of plasma are simple hybrid structures, sometimes methylated and core α1,6-fucosylated, with terminal β1,3-linked galactose; a remarkable high degree of sulfation of such glycans was observed. Hemocytes express a larger range of glycans, including core-difucosylated paucimannosidic forms, whereas bi- and triantennary glycans were found in both sources, including structures carrying sulfated and methylated variants of the histo-blood group A epitope. The primary features of the oyster whole hemocyte N-glycome were also found in dominin, the major plasma glycoprotein, which had also been identified as a CvGal1 glycoprotein ligand associated with hemocytes. The occurrence of terminal blood group moieties on oyster dominin and on hemocyte surfaces can account in part for their affinity for the endogenous CvGal1.  相似文献   
57.
GABAB receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABAB receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABAB1a, GABAB1b, and GABAB2 form fully functional heteromeric GABAB(1a,2) and GABAB(1b,2) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABAB(1a,2) and GABAB(1b,2) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABAB receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABAB receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABAB receptor-mediated K+ current response. In summary, our experiments support that the up-regulation of functional GABAB receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.  相似文献   
58.
59.
Haloarchaeal alcohol dehydrogenases are exciting biocatalysts with potential industrial applications. In this study, two alcohol dehydrogenase enzymes from the extremely halophilic archaeon Haloferax volcanii (HvADH1 and HvADH2) were homologously expressed and subsequently purified by immobilized metal-affinity chromatography. The proteins appeared to copurify with endogenous alcohol dehydrogenases, and a double Δadh2 Δadh1 gene deletion strain was constructed to prevent this occurrence. Purified HvADH1 and HvADH2 were compared in terms of stability and enzymatic activity over a range of pH values, salt concentrations, and temperatures. Both enzymes were haloalkaliphilic and thermoactive for the oxidative reaction and catalyzed the reductive reaction at a slightly acidic pH. While the NAD+-dependent HvADH1 showed a preference for short-chain alcohols and was inherently unstable, HvADH2 exhibited dual cofactor specificity, accepted a broad range of substrates, and, with respect to HvADH1, was remarkably stable. Furthermore, HvADH2 exhibited tolerance to organic solvents. HvADH2 therefore displays much greater potential as an industrially useful biocatalyst than HvADH1.  相似文献   
60.
Headspace analyses over microbial cultures using multi-capillary column-ion mobility spectrometry (MCC-IMS) could lead to a faster, safe and cost-effective method for the identification of pathogens. Recent studies have shown that MCC-IMS allows identification of bacteria and fungi, but no information is available from when on during their growth a differentiation between bacteria is possible. Therefore, we analysed the headspace over human pathogenic reference strains of Escherichia coli and Pseudomonas aeruginosa at four time points during their growth in a complex fluid medium. In order to validate our findings and to answer the question if the results of one bacterial strain can be transferred to other strains of the same species, we also analysed the headspace over cultures from isolates of random clinical origin. We detected 19 different volatile organic compounds (VOCs) that appeared or changed their signal intensity during bacterial growth. These included six VOCs exclusively changing over E. coli cultures and seven exclusively changing over P. aeruginosa cultures. Most changes occurred in the late logarithmic or static growth phases. We did not find differences in timing or trends in signal intensity between VOC patterns of different strains of one species. Our results show that differentiation of human pathogenic bacteria by headspace analyses using MCC-IMS technology is best possible during the late phases of bacterial growth. Our findings also show that VOC patterns of a bacterial strain can be transferred to other strains of the same species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号