首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2181篇
  免费   214篇
  国内免费   3篇
  2398篇
  2023年   12篇
  2022年   17篇
  2021年   45篇
  2020年   14篇
  2019年   42篇
  2018年   37篇
  2017年   30篇
  2016年   64篇
  2015年   101篇
  2014年   120篇
  2013年   135篇
  2012年   191篇
  2011年   167篇
  2010年   117篇
  2009年   115篇
  2008年   137篇
  2007年   133篇
  2006年   130篇
  2005年   146篇
  2004年   123篇
  2003年   112篇
  2002年   95篇
  2001年   29篇
  2000年   30篇
  1999年   23篇
  1998年   19篇
  1997年   13篇
  1996年   14篇
  1995年   15篇
  1994年   7篇
  1993年   12篇
  1992年   9篇
  1991年   12篇
  1990年   12篇
  1989年   11篇
  1988年   6篇
  1987年   15篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1975年   9篇
  1974年   5篇
  1973年   8篇
  1972年   3篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
31.
It has been argued that spatially explicit population models (SEPMs) cannot provide reliable guidance for conservation biology because of the difficulty of obtaining direct estimates for their demographic and dispersal parameters and because of error propagation. We argue that appropriate model calibration procedures can access additional sources of information, compensating the lack of direct parameter estimates. Our objective is to show how model calibration using population-level data can facilitate the construction of SEPMs that produce reliable predictions for conservation even when direct parameter estimates are inadequate. We constructed a spatially explicit and individual-based population model for the dynamics of brown bears (Ursus arctos) after a reintroduction program in Austria. To calibrate the model we developed a procedure that compared the simulated population dynamics with distinct features of the known population dynamics (=patterns). This procedure detected model parameterizations that did not reproduce the known dynamics. Global sensitivity analysis of the uncalibrated model revealed high uncertainty in most model predictions due to large parameter uncertainties (coefficients of variation CV 0.8). However, the calibrated model yielded predictions with considerably reduced uncertainty (CV 0.2). A pattern or a combination of various patterns that embed information on the entire model dynamics can reduce the uncertainty in model predictions, and the application of different patterns with high information content yields the same model predictions. In contrast, a pattern that does not embed information on the entire population dynamics (e.g., bear observations taken from sub-areas of the study area) does not reduce uncertainty in model predictions. Because population-level data for defining (multiple) patterns are often available, our approach could be applied widely.  相似文献   
32.
The gene coding for a dioxygenase with the ability to cleave salicylate by a direct ring fission mechanism to 2-oxohepta-3,5-dienedioic acid was cloned from Pseudaminobacter salicylatoxidans strain BN12. The deduced amino acid sequence encoded a protein with a molecular mass of 41,176 Da, which showed 28 and 31% sequence identity, respectively, to a gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIMB 9867 and a 1-hydroxy-2-naphthoate 1,2-dioxygenase from Nocardioides sp. KP7. The highest degree of sequence identity (58%) was found to a presumed gentisate 1,2-dioxygenase from Corynebacterium glutamicum. The enzyme from P. salicylatoxidans BN12 was heterologously expressed in Escherichia coli and purified as a His-tagged enzyme variant. The purified enzyme oxidized in addition to salicylate, gentisate, 5-aminosalicylate, and 1-hydroxy-2-naphthoate also 3-amino- and 3- and 4-hydroxysalicylate, 5-fluorosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-bromosalicylate, 3-, 4-, and 5-methylsalicylate, and 3,5-dichlorosalicylate. The reactions were analyzed by high pressure liquid chromatography/mass spectrometry, and the reaction products were tentatively identified. For comparison, the putative gentisate 1,2-dioxygenase from C. glutamicum was functionally expressed in E. coli and shown to convert gentisate but not salicylate or 1-hydroxy-2-naphthoate.  相似文献   
33.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   
34.
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.  相似文献   
35.
Certain drugs or treatments that are known to affect bone quality or integrity might have side effects on the extracellular matrix of articular cartilage. We investigated the effects of vitamin D and calcium deficiency, estrogen deficiency, and hypercortisolism alone or in combination with bisphosphonates or sodium fluoride in an animal model, viz., the Göttingen miniature pig (n=29). The articular cartilage from knee joints was analyzed for its content of glycosaminoglycans (GAGs, as macromolecules responsible for the elasticity of articular cartilage) by a spectrometric method with dimethylene blue chloride. In cryo- or paraffin sections, alkaline phosphatase (AP, as an enzyme indicating mineralization or reorganization of articular cartilage matrix) was localized by enzyme histochemistry, and positive cells were counted, whereas differently sulfated GAGs were stained histochemically. A significant decrease in GAG content was measured in ovariectomized and long-term glucocorticoid-treated animals compared with untreated animals. In the glucocorticoid/sodium fluoride group, GAGs were significantly diminished, and significantly fewer AP-positive chondrocytes were counted compared with the control. GAG content was slightly higher, and significantly more AP-positive chondrocytes were counted in short-term glucocorticoid-treated animals then in the control group. GAGs, as part of proteoglycans, are responsible for the water-storage capacity that gives articular cartilage its unique property of elasticity. Thus, ovariectomy and long-term glucocorticoid therapy, especially when combined with sodium fluoride, have detrimental effects on this tissue.This work was in part supported by Deutsche Forschungsgemeinschaft (DFG) project no. Schr 430/5–1, 5–2 and G 1289/1–1, 1–2  相似文献   
36.
Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.  相似文献   
37.
Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli. Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity.  相似文献   
38.
Rising temperatures and agricultural changes (intensification and succession on fallow land) during the last few decades have caused a strong decline of moist and cool sites on nutrient-poor grasslands and species depending on these habitats. We tested the effects of habitat deterioration on a local and regional scale in such a species, the highly endangered butterfly Lycaena helle , which was more widely distributed over central Europe during the postglacial period, but has recently become restricted to some remnants. We analysed five polymorphic microsatellite loci in 220 individuals sampled at ten different localities. The study sites in Germany, Luxembourg and Belgium are geographically split into three mountain regions: the Ardennes, the Eifel and the Westerwald; the latter is separated from the other two by the river Rhine. A comparatively high genetic diversity was detected in all local populations and genetic differentiation was found among the Ardennes, the Eifel and the Westerwald (FCT: 0.084). The genetic differentiation among all populations (FST: 0.137) underlines natural and anthropogenic habitat fragmentation. While ongoing gene flow seems to exist among the Eifel populations indicating the only intact metapopulation, a high genetic differentiation in the Ardennes and the Westerwald indicates a disruption of population connectivity. Our genetic data obtained on different spatial scales show the genetic consequence of long-term isolation and should trigger necessary conservation measures at the metapopulation level.  相似文献   
39.
Sandy plains are characteristic of the coastal region of Brazil. We investigated the diel patterns of changes in organic acid levels, leaf conductance and chlorophylla fluorescence for sun-exposed and shaded plants ofClusia hilariana, one of the dominant woody species in the sandy coastal plains of northern Rio de Janeiro state. Both exposed and shaded plants showed a typical CAM pattern with considerable diel oscillations in organic acid levels. The degradation of both malic and citric acids during the midday stomatal closure period could lead to potential CO2 fixation rates of 28 mol m-2 s-1 in exposed leaves. Moreover, exposed leaves exhibited large increases in total non-photochemical quenching (qN) accompanied by a substantial decrease in effective quantum yield during the course of the day. However, these potential high rates of CO2 fixation and the increases inqn of exposed plants were not enough to maintain the primary electron acceptor of photosystem II (qA) in a low reduction state, similar to that of shaded plants. As a result, there was a moderate increase in the reduction state of qA throughout the day. Most of the decline in photochemical efficiency of exposed leaves ofC. hilariana was reversible, as evidenced by the high levels of pre-dawn potential quantum yields (Fv/Fm) and their rapid recovery after sunset. However, the depletion of the organic acid pool in the afternoon resulted in an accentuated subsequent drop in Fv/Fm, suggesting that prolonged periods of water stress accompanied by high irradiance levels may expose plants ofC. hilariana in unprotected habitats to the danger of photoinhibition.  相似文献   
40.
The 13/12C ratio in plant roots is likely dynamic depending on root function (storage versus uptake), but to date, little is known about the effect of season and root order (an indicator of root function) on the isotopic composition of C‐rich fractions in roots. To address this, we monitored the stable isotopic composition of one evergreen (Picea abies) and one deciduous (Fagus sylvatica), tree species' roots by measuring δ13C of bulk, respired and labile C, and starch from first/second and third/fourth order roots during spring and fall root production periods. In both species, root order differences in δ13C were observed in bulk organic matter, labile, and respired C fractions. Beech exhibited distinct seasonal trends in δ13C of respired C, while spruce did not. In fall, first/second order beech roots were significantly depleted in 13C, whereas spruce roots were enriched compared to higher order roots. Species variation in δ 13C of respired C may be partially explained by seasonal shifts from enriched to depleted C substrates in deciduous beech roots. Regardless of species identity, differences in stable C isotopic composition of at least two root order groupings (first/second, third/fourth) were apparent, and should hereafter be separated in belowground C‐supply‐chain inquiry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号