首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2348篇
  免费   268篇
  国内免费   3篇
  2023年   11篇
  2022年   15篇
  2021年   48篇
  2020年   14篇
  2019年   44篇
  2018年   40篇
  2017年   29篇
  2016年   66篇
  2015年   113篇
  2014年   126篇
  2013年   145篇
  2012年   198篇
  2011年   178篇
  2010年   124篇
  2009年   109篇
  2008年   145篇
  2007年   140篇
  2006年   136篇
  2005年   151篇
  2004年   126篇
  2003年   119篇
  2002年   108篇
  2001年   38篇
  2000年   24篇
  1999年   40篇
  1998年   28篇
  1997年   18篇
  1996年   22篇
  1995年   22篇
  1994年   17篇
  1993年   18篇
  1992年   19篇
  1991年   17篇
  1990年   17篇
  1989年   16篇
  1988年   14篇
  1987年   14篇
  1986年   12篇
  1985年   6篇
  1984年   11篇
  1983年   6篇
  1980年   7篇
  1979年   14篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1972年   6篇
  1969年   5篇
  1966年   4篇
排序方式: 共有2619条查询结果,搜索用时 15 毫秒
81.
Ecological studies based on time‐series often investigate community changes centered on species abundance or biomass but rarely expose the consequential functional aspects underlying such changes. Functional diversity measures have proven to be more accurate predictors for ecosystem functioning than traditional taxonomic approaches and hence gained much attention. There are only limited studies available that analyse the functional implications behind decadal changes of entire communities. We studied zoobenthic communities of two habitats, sheltered and exposed, of a coastal system subject to contrasting changes in community composition over the past four decades. Besides eutrophication and climate‐related impacts, the system has been invaded by a non‐native polycheate Marenzelleria spp., adding altered functional properties to the communities. The functional dispersion (FDis) metric was used as a measure for comparing the functional diversity of the contrasting habitats, with special focus on the role of Marenzelleria for the entire communities. We highlight changes in the functional identity of the communities, expressed as community‐weighted means of trait expression (CWM), using multivariate techniques, and investigate the relationship between taxonomic and functional changes. Despite contrasting community developments in the two habitats, with characteristics traditionally suggesting different environmental quality, we found that the FDis in both habitats remained similar and increased with the introduction of Marenzelleria. Although showing maintained functional diversity across time and space, the functional identity (CWM) of communities changed irrespective of taxonomical differences. Examples include inter alia alterations in palatability proxies, feeding position and sediment transportation types, indicating changed functionality of zoobenthos in coastal systems. We show, when focussing on qualitative functional changes of communities, it is important to evaluate the underlying functional identity, and not only rely on measures of the diversity of functions per se, as the quality indication of expressed functional traits can be concealed when using multi‐functionality approaches.  相似文献   
82.
The 13/12C ratio in plant roots is likely dynamic depending on root function (storage versus uptake), but to date, little is known about the effect of season and root order (an indicator of root function) on the isotopic composition of C‐rich fractions in roots. To address this, we monitored the stable isotopic composition of one evergreen (Picea abies) and one deciduous (Fagus sylvatica), tree species' roots by measuring δ13C of bulk, respired and labile C, and starch from first/second and third/fourth order roots during spring and fall root production periods. In both species, root order differences in δ13C were observed in bulk organic matter, labile, and respired C fractions. Beech exhibited distinct seasonal trends in δ13C of respired C, while spruce did not. In fall, first/second order beech roots were significantly depleted in 13C, whereas spruce roots were enriched compared to higher order roots. Species variation in δ 13C of respired C may be partially explained by seasonal shifts from enriched to depleted C substrates in deciduous beech roots. Regardless of species identity, differences in stable C isotopic composition of at least two root order groupings (first/second, third/fourth) were apparent, and should hereafter be separated in belowground C‐supply‐chain inquiry.  相似文献   
83.
84.
85.
Induction of an axenic filamentous‐like callus growth from the brown algae Fucus vesiculosus is described. Different treatments were investigated in various combinations to develop axenic cultures based on identification of surface symbionts via 18S ribosomal RNA. Moreover, viability was confirmed after such processes by 2,3,5‐triphenyl tetrazolium chloride assay that demonstrated an average viability of 29%, relative to nonsterilized explants. After six weeks of a phototrophic cultivation on artificial sea water‐12‐nitrilotriacetic acid (0.5% w/v agar), a filamentous‐like callus growth was observed, which was identified genetically through its mitochondrial DNA after subculturing. Achievement of confirmed marine callus cultures might enrich old previously established blue biotechnology techniques and open new chances for cultivation of brown algae for production of good manufacturing practice‐compliant bioproducts.  相似文献   
86.
87.
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.  相似文献   
88.
Assessing anger regulation via self-reports is fraught with problems, especially among children. Behavioral observation provides an ecologically valid alternative for measuring anger regulation. The present study uses data from two waves of a longitudinal study to present a behavioral observation approach for measuring anger regulation in middle childhood. At T1, 599 children from Germany (6–10 years old) were observed during an anger eliciting task, and the use of anger regulation strategies was coded. At T2, 3 years later, the observation was repeated with an age-appropriate version of the same task. Partial metric measurement invariance over time demonstrated the structural equivalence of the two versions. Maladaptive anger regulation between the two time points showed moderate stability. Validity was established by showing correlations with aggressive behavior, peer problems, and conduct problems (concurrent and predictive criterion validity). The study presents an ecologically valid and economic approach to assessing anger regulation strategies in situ.  相似文献   
89.
Remane's Artenminimum at the horohalinicum is a fundamental concept in ecology to describe and explain the distribution of organisms along salinity gradients. However, a recent metadata analysis challenged this concept for protists, proposing a species maximum in brackish waters. Due to data bias, this literature-based investigation was highly discussed. Reliable data verifying or rejecting the species minimum for protists in brackish waters were critically lacking. Here, we sampled a pronounced salinity gradient along a west–east transect in the Baltic Sea and analysed protistan plankton communities using high-throughput eDNA metabarcoding. A strong salinity barrier at the upper limit of the horohalinicum and 10 psu appeared to select for significant shifts in protistan community structures, with dinoflagellates being dominant at lower salinities, and dictyochophytes and diatoms being keyplayers at higher salinities. Also in vertical water column gradients in deeper basins (Kiel Bight, Arkona and Bornholm Basin) appeared salinity as significant environmental determinant influencing alpha- and beta-diversity patterns. Importantly, alpha-diversity indices revealed species maxima in brackish waters, that is, indeed contrasting Remane's Artenminimum concept. Statistical analyses confirmed salinity as the major driving force for protistan community structuring with high significance. This suggests that macrobiota and microbial eukaryotes follow fundamentally different rules regarding diversity patterns in the transition zone from freshwater to marine waters.  相似文献   
90.
Single wavelength fluorescence cross-correlation spectroscopy (SW-FCCS), introduced to study biomolecular interactions, has recently been reported to monitor enzyme activity by using a newly developed fluorescent protein variant together with cyan fluorescent protein. Here, for the first time to our knowledge, SW-FCCS is applied to detect interactions between membrane receptors in vivo by using the widely used enhanced green fluorescent protein and monomeric red fluorescent protein. The biological system studied here is the epidermal growth factor/ErbB receptor family, which plays pivotal roles in the development of organisms ranging from worms to humans. It is widely thought that a ligand binds to the monomeric form of the receptor and induces its dimeric form for activation. By using SW-FCCS and F?rster resonance energy transfer, we show that the epidermal growth factor receptor and ErbB2 have preformed homo- and heterodimeric structures on the cell surface and quantitation of dimer fractions is performed by SW-FCCS. These receptors are major targets of anti-cancer drug development, and the receptors' homo- and heterodimeric structures are relevant for such developments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号