首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1818篇
  免费   177篇
  国内免费   3篇
  1998篇
  2023年   11篇
  2022年   16篇
  2021年   45篇
  2020年   12篇
  2019年   40篇
  2018年   31篇
  2017年   24篇
  2016年   58篇
  2015年   94篇
  2014年   111篇
  2013年   120篇
  2012年   167篇
  2011年   161篇
  2010年   107篇
  2009年   98篇
  2008年   121篇
  2007年   121篇
  2006年   118篇
  2005年   131篇
  2004年   111篇
  2003年   98篇
  2002年   87篇
  2001年   17篇
  2000年   10篇
  1999年   15篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   11篇
  1994年   5篇
  1993年   8篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1966年   1篇
排序方式: 共有1998条查询结果,搜索用时 15 毫秒
21.
Haloarchaeal alcohol dehydrogenases are exciting biocatalysts with potential industrial applications. In this study, two alcohol dehydrogenase enzymes from the extremely halophilic archaeon Haloferax volcanii (HvADH1 and HvADH2) were homologously expressed and subsequently purified by immobilized metal-affinity chromatography. The proteins appeared to copurify with endogenous alcohol dehydrogenases, and a double Δadh2 Δadh1 gene deletion strain was constructed to prevent this occurrence. Purified HvADH1 and HvADH2 were compared in terms of stability and enzymatic activity over a range of pH values, salt concentrations, and temperatures. Both enzymes were haloalkaliphilic and thermoactive for the oxidative reaction and catalyzed the reductive reaction at a slightly acidic pH. While the NAD+-dependent HvADH1 showed a preference for short-chain alcohols and was inherently unstable, HvADH2 exhibited dual cofactor specificity, accepted a broad range of substrates, and, with respect to HvADH1, was remarkably stable. Furthermore, HvADH2 exhibited tolerance to organic solvents. HvADH2 therefore displays much greater potential as an industrially useful biocatalyst than HvADH1.  相似文献   
22.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   
23.
The response regulator/histidine kinase pair LiaRS of Bacillus subtilis, together with its membrane‐bound inhibitor protein LiaF, constitutes an envelope stress‐sensing module that is conserved in Firmicutes bacteria. LiaR positively autoregulates the expression of the liaIHliaGFSR operon from a strictly LiaR‐dependent promoter (PliaI). A comprehensive perturbation analysis revealed that the functionality of the LiaFSR system is very susceptible to alterations of its protein composition and amounts. A genetic analysis indicates a LiaF:LiaS:LiaR ratio of 18:4:1. An excess of LiaS over LiaR was subsequently verified by quantitative Western analysis. This stoichiometry, which is crucial to maintain a functional Lia system, differs from any other two‐component system studied to date, in which the response regulator is present in excess over the histidine kinase. Moreover, we demonstrate that LiaS is a bifunctional histidine kinase that acts as a phosphatase on LiaR in the absence of a suitable stimulus. An increased amount of LiaR – both in the presence and in the absence of LiaS – leads to a strong induction of PliaI activity due to phosphorylation of the response regulator by acetyl phosphate. Our data demonstrate that LiaRS, in contrast to other two‐component systems, is non‐robust with regard to perturbations of its stoichiometry.  相似文献   
24.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   
25.
26.
27.
Transforming growth factor-beta2 (TGF-beta2) is known to suppress the immune response to cancer cells and plays a pivotal role in tumor progression by regulating key mechanisms including proliferation, metastasis, and angiogenesis. For targeted protein suppression the TGF-beta2-specific antisense oligodeoxynucleotide AP 12009 was developed. In vitro experiments have been performed to prove specificity and efficacy of the TGF-beta2 inhibitor AP 12009 employing patient-derived malignant glioma cells as well as peripheral blood mononuclear cells (PBMCs) from patients. Clinically, the antisense compound AP 12009 was assessed in three Phase I/II-studies for the treatment of patients with recurrent or refractory malignant (high-grade) glioma WHO grade III or IV. Although the study was not primarily designed as an efficacy evaluation, prolonged survival compared to literature data and response data were observed, which are very rarely seen in this tumor indication. Two patients experienced long-lasting complete tumor remissions. These results implicate targeted TGF-beta2-suppression using AP 12009 as a promising novel approach for malignant gliomas and other highly aggressive, TGF-beta-2-overexpressing tumors.  相似文献   
28.
An azido-ubiquinone derivative, 3-azido-2-methyl-5-methoxy[3H]-6-decyl-1,4-benzoquinone ([3H]azido-Q), was used to study the ubiquinone/protein interaction and to identify the ubiquinone-binding site in Escherichia coli NADH:ubiquinone oxidoreductase (complex I). The purified complex I showed no loss of activity after incubation with a 20-fold molar excess of [3H]azido-Q in the dark. Illumination of the incubated sample with long wavelength UV light for 10 min at 0 degrees C caused a 40% decrease of NADH:ubiquinone oxidoreductase activity. SDS-PAGE of the complex labeled with [3H]azido-Q followed by analysis of the radioactivity distribution among the subunits revealed that subunit NuoM was heavily labeled, suggesting that this protein houses the Q-binding site. When the [3H]azido-Q-labeled NuoM was purified from the labeled reductase by means of preparative SDS-PAGE, a 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone-linked peptide, with a retention time of 41.4 min, was obtained by high performance liquid chromatography of the protease K digest of the labeled subunit. This peptide had a partial NH2-terminal amino acid sequence of NH2-VMLIAILALV-, which corresponds to amino acid residues 184-193 of NuoM. The secondary structure prediction of NuoM using the Toppred hydropathy analysis showed that the Q-binding peptide overlaps with a proposed Q-binding motif located in the middle of the transmembrane helix 5 toward the cytoplasmic side of the membrane. Using the PHDhtm hydropathy plot, the labeled peptide is located in the transmembrane helix 4 toward the periplasmic side of the membrane.  相似文献   
29.
During aerobic degradation of naphthalene-2-sulfonate (2NS), Sphingomonas xenophaga strain BN6 produces redox mediators which significantly increase the ability of the strain to reduce azo dyes under anaerobic conditions. It was previously suggested that 1,2-dihydroxynaphthalene (1,2-DHN), which is an intermediate in the degradative pathway of 2NS, is the precursor of these redox mediators. In order to analyze the importance of the formation of 1,2-DHN, the dihydroxynaphthalene dioxygenase gene (nsaC) was disrupted by gene replacement. The resulting strain, strain AKE1, did not degrade 2NS to salicylate. After aerobic preincubation with 2NS, strain AKE1 exhibited much higher reduction capacities for azo dyes under anaerobic conditions than the wild-type strain exhibited. Several compounds were present in the culture supernatants which enhanced the ability of S. xenophaga BN6 to reduce azo dyes under anaerobic conditions. Two major redox mediators were purified from the culture supernatants, and they were identified by high-performance liquid chromatography-mass spectrometry and comparison with chemically synthesized standards as 4-amino-1,2-naphthoquinone and 4-ethanolamino-1,2-naphthoquinone.  相似文献   
30.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号