首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   187篇
  国内免费   3篇
  2023年   9篇
  2022年   11篇
  2021年   46篇
  2020年   13篇
  2019年   40篇
  2018年   33篇
  2017年   25篇
  2016年   61篇
  2015年   99篇
  2014年   115篇
  2013年   132篇
  2012年   177篇
  2011年   166篇
  2010年   112篇
  2009年   101篇
  2008年   129篇
  2007年   126篇
  2006年   119篇
  2005年   133篇
  2004年   116篇
  2003年   100篇
  2002年   88篇
  2001年   20篇
  2000年   12篇
  1999年   17篇
  1998年   16篇
  1997年   9篇
  1996年   11篇
  1995年   12篇
  1994年   5篇
  1993年   10篇
  1992年   7篇
  1991年   3篇
  1989年   4篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   9篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1966年   1篇
  1935年   1篇
排序方式: 共有2114条查询结果,搜索用时 15 毫秒
61.
62.
Immunization with a plant-produced colorectal cancer antigen   总被引:2,自引:0,他引:2  
Cancer vaccination has become an important focus of oncology in recent years. Active immunization with tumor-associated antigens such as colorectal cancer antigen GA733-2 is thought to potentially overcome the reoccurrence of metastasis. As recombinant protein production in bioreactors is costly and subject to growing safety concerns, we tested plants as an alternative for the expression of a potential colorectal cancer vaccine. Comparing colorectal cancer antigen GA733-2 produced in tobacco plants with the same antigen produced in insect cell culture, we found a similar humoral immune response to injection of either of the two antigen preparations into mice. Some minor differences were observed in the cellular response that might be due to impurities. Our studies compare for the first time, immunization with the same antigen expressed in either plants or insect cell culture. This will provide important data for use of plants as production systems of therapeutics.  相似文献   
63.
The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.  相似文献   
64.
It has been argued that spatially explicit population models (SEPMs) cannot provide reliable guidance for conservation biology because of the difficulty of obtaining direct estimates for their demographic and dispersal parameters and because of error propagation. We argue that appropriate model calibration procedures can access additional sources of information, compensating the lack of direct parameter estimates. Our objective is to show how model calibration using population-level data can facilitate the construction of SEPMs that produce reliable predictions for conservation even when direct parameter estimates are inadequate. We constructed a spatially explicit and individual-based population model for the dynamics of brown bears (Ursus arctos) after a reintroduction program in Austria. To calibrate the model we developed a procedure that compared the simulated population dynamics with distinct features of the known population dynamics (=patterns). This procedure detected model parameterizations that did not reproduce the known dynamics. Global sensitivity analysis of the uncalibrated model revealed high uncertainty in most model predictions due to large parameter uncertainties (coefficients of variation CV 0.8). However, the calibrated model yielded predictions with considerably reduced uncertainty (CV 0.2). A pattern or a combination of various patterns that embed information on the entire model dynamics can reduce the uncertainty in model predictions, and the application of different patterns with high information content yields the same model predictions. In contrast, a pattern that does not embed information on the entire population dynamics (e.g., bear observations taken from sub-areas of the study area) does not reduce uncertainty in model predictions. Because population-level data for defining (multiple) patterns are often available, our approach could be applied widely.  相似文献   
65.
66.
A rapid and sensitive assay for the determination of dihydroergocryptine (DHEC) in human plasma and urine samples with dihydroergotamine (DHET) as the internal standard was developed. The procedure employs on-line sample preparation using an extraction pre-column and an octadecylsilylsilica (ODS) analytical column. After centrifugation human plasma or urine were injected onto the pre-column, concentrated and extracted, back-flushed onto the analytical column and eluted with a binary methanol--aqueous formic acid gradient. Either determination of DHEC as well of its mono- and dihydroxy-metabolites was performed by measurement of the signal responses from MS detection in the selected reaction monitoring (SRM) mode using the transition of the respective parent ions to the common daughter ion at m/z=270.2 amu. The limit of quantitation (LOQ) for determinations of DHEC in both plasma and urine were 25 pg/ml for injected sample volumes of 400 microl. Proportionality of signal responses versus concentration was accomplished within the range of 25-1000 pg/ml. Recovery of target analyte from plasma was 99%. Mean values of the coefficients of variation (CV) for the target analyte in plasma ranged from 1.7 to 13.8% (within-day) and 5.0 to 9.1% (between-day) and accuracy from 91.7 to 102.6% for the within-day and from 95.8 to 98.8% for the between-day measurements. The corresponding values for determinations in urine were 1.7-14.5% (within-day) and 5.3-11.8% (between-day) for CV and 95.8-110.7% (within-day) and 100.1-104.6% (between-day) for accuracy.  相似文献   
67.
68.

Background  

Vacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different (VHA)-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques (FRET). Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i) a less conserved cytoplasmically orientated N-terminus and (ii) a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed.  相似文献   
69.
Fehr C  Rausher MD 《Molecular ecology》2004,13(7):1839-1847
Although alleles at both the W and A loci in the common morning glory, Ipomoea purpurea, produce similar white-flowered phenotypes, these alleles differ by over an order of magnitude in average frequency. In this initial attempt to determine the causes of this difference, we employed artificial arrays of plants to estimate mating system characteristics (total siring success, selfing rates and contribution to the outcross pollen pool) for the homozygous pigmented and white-flowered genotypes at the A locus. This experiment demonstrates that: (1) at both low and high frequencies, white-flowered plants were visited by pollinators at the same rate as plants with pigmented flowers; (2) at both frequencies, the a allele exhibited a greater total siring success (self and outcross pollen) than the A allele; (3) individuals of both genotypes contributed equally to the outcross pollen pool; and (4) aa plants may have a higher selfing rate than AA plants. Coupled with minimal inbreeding depression in I. purpurea, these observations indicate that the allele producing white flowers enjoys a transmission advantage that would tend to cause this allele to increase in frequency. This transmission advantage is very similar to that shown previously to be operating on the white-flowered allele at the W locus, although the specific causes of the advantage appear to differ between loci. The frequency difference between the two alleles is thus not likely to be due to differences in the effect of flower-colour variation on transmission. Rather, substantially greater deleterious pleiotropic effects associated with the white-flower a allele is likely to be the primary cause of the frequency difference.  相似文献   
70.
Proteins of the major histocompatibility complex (MHC) play a central role in the presentation of antigens to the adaptive immune system. The MHC also influences the odour-based choice of mates in humans and several animal taxa. It has recently been shown that female three-spined sticklebacks (Gasterosteus aculeatus) aim at a moderately high MHC diversity in their offspring when choosing a mate. Do they optimize the immune systems of their offspring? Using three-spined sticklebacks that varied in their individual numbers of MHC class IIB molecules, we tested, experimentally, whether allelic diversity at the MHC influences parasite resistance and immune parameters. We found that sticklebacks with low MHC diversity suffered more from parasite infection after experimental exposure to Schistocephalus solidus tapeworms and Glugea anomala microsporidians. They also showed the highest proportion of granulocytes and the strongest respiratory burst reaction, which are correlates of innate immunity. This indicates a strong activity of the innate immune system after challenge by parasites when MHC diversity is suboptimal. Individuals with very high allelic diversity at the MHC seemed inferior to those with moderately high diversity. Such a pattern is consistent with theoretical expectations of an optimal balance between the number of recognizable antigens and self-tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号