首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59484篇
  免费   5698篇
  国内免费   22篇
  65204篇
  2023年   243篇
  2022年   504篇
  2021年   1005篇
  2020年   632篇
  2019年   807篇
  2018年   992篇
  2017年   864篇
  2016年   1476篇
  2015年   2442篇
  2014年   2705篇
  2013年   3158篇
  2012年   4210篇
  2011年   4073篇
  2010年   2581篇
  2009年   2345篇
  2008年   3383篇
  2007年   3433篇
  2006年   3259篇
  2005年   3092篇
  2004年   3029篇
  2003年   2772篇
  2002年   2704篇
  2001年   872篇
  2000年   713篇
  1999年   815篇
  1998年   854篇
  1997年   589篇
  1996年   513篇
  1995年   470篇
  1994年   498篇
  1993年   494篇
  1992年   623篇
  1991年   499篇
  1990年   486篇
  1989年   490篇
  1988年   440篇
  1987年   408篇
  1986年   403篇
  1985年   377篇
  1984年   434篇
  1983年   398篇
  1982年   419篇
  1981年   382篇
  1980年   395篇
  1979年   310篇
  1978年   299篇
  1977年   263篇
  1976年   257篇
  1974年   233篇
  1973年   208篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
901.
Dudley A  McKinstry W  Thomas D  Best J  Jenkins A 《BioTechniques》2003,35(4):724-6, 728, 730 passim
The success of recombinant protein expression/purification in Escherichia coli depends on a high-fidelity system rendering purified proteins free of confounding contaminants such as endotoxin. Here we report on the expression and purification of a cryptic plasminogen-derived domain, kringle 5, which was previously reported to specifically inhibit endothelial cell growth and, therefore, angiogenesis. Using a histidine (HIS)-tag expression and Ni(+)-NTA agarose purification system identical to previous reports, we found that our purified recombinant kringle 5 did inhibit endothelial cell growth, but this activity could not be eradicated by heat denaturing or proteolysis of kringle 5 with various proteases. This led us to suspect the presence of a contaminant in the purified samples. Quantitative endotoxin testing using a limulus amoebocyte lysate assay revealed that all samples purified by Ni(+)-NTA agarose alone harbored high concentrations of endotoxin that could not be removed by additional purification on anion exchange chromatography. Finally, when kringle 5 was rendered endotoxin-free by purification on reverse phase high-performance liquid chromatography (HPLC), there was a complete loss of endothelial cell growth inhibitory activity. These results strongly suggest that endotoxin-free recombinant kringle 5 may not possess anti-angiogenic activity and demonstrates that, especially in angiogenesis type assays, endotoxin contamination can lead to a misinterpretation of results.  相似文献   
902.
903.
Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.  相似文献   
904.
Atmospheric deposition contributes a large fraction of the annual nitrogen (N) input to the basin of the Susquehanna River, a river that provides two-thirds of the annual N load to the Chesapeake Bay. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna’s forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (δ15N- and δ18O-nitrate), and seasonality of stream N over 2 years for 7–13 catchments. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season maxima and growing season minima. Coarse estimates of N export indicated high rates of inorganic N retention (>95%), yet streams had unexpected seasonal nitrate patterns, with summer peaks (14–96 μmol L−1), October crashes (<1 μmol L−1), and modest rebounds during the dormant season (<1–20 μmol L−1). Stream δ18O-nitrate values indicated microbial nitrification as the primary source of stream nitrate, although snowmelt or other atmospheric source contributed up to 47% of stream nitrate in some March samples. The autumn nitrate crash coincided with leaffall, likely due to in-stream heterotrophic uptake of N. Hypothesized sources of the summer nitrate peaks include: delayed release of nitrate previously flushed to groundwater, weathering of geologic N, and summer increases in net nitrate production. Measurements of shale δ15N and soil-, well-, and streamwater nitrate within one catchment point toward a summer increase in soil net nitrification as the driver of this pattern. Rather than seasonal plant demand, processes governing the seasonal production, retention, and transport of nitrate in soils may drive nitrate seasonality in this and many other systems.  相似文献   
905.
Sortases are transpeptidases produced by Gram-positive bacteria to anchor cell surface proteins covalently to the cell wall. The Staphylococcus aureus sortase A (SrtA) cleaves a short C-terminal recognition motif (LPXTG) on the target protein followed by the formation of an amide bond with the pentaglycine cross-bridge in the cell wall. Over recent years, several researchers have exploited this specific reaction for a range of biotechnology applications, including the incorporation of non-native peptides and non-peptidic molecules into proteins, the generation of nucleic acid–peptide conjugates and neoglycoconjugates, protein circularisation, and labelling of cell surface proteins on living cells.  相似文献   
906.
Very-long-chain polyunsaturated fatty acids, such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have well-documented importance in human health and nutrition. Sustainable production in robust host organisms that do not synthesize them naturally requires the coordinated expression of several heterologous desaturases and elongases. In the present study we show production of EPA in Saccharomyces cerevisiae using glucose as the sole carbon source through expression of five heterologous fatty acid desaturases and an elongase. Novel Δ5-desaturases from the ciliate protozoan Paramecium tetraurelia and from the microalgae Ostreococcus tauri and Ostreococcus lucimarinus were identified via a BLAST search, and their substrate preferences and desaturation efficiencies were assayed in a yeast strain producing the ω6 and ω3 fatty acid substrates for Δ5-desaturation. The Δ5-desaturase from P. tetraurelia was up-to-2-fold more efficient than the microalgal desaturases and was also more efficient than Δ5-desaturases from Mortierella alpina and Leishmania major. In vivo investigation of acyl carrier substrate specificities showed that the Δ5-desaturases from P. tetraurelia, O. lucimarinus, O. tauri, and M. alpina are promiscuous toward the acyl carrier substrate but prefer phospholipid-bound substrates. In contrast, the Δ5-desaturase from L. major showed no activity on phospholipid-bound substrate and thus appears to be an exclusively acyl coenzyme A-dependent desaturase.  相似文献   
907.
Principles of protein folding--a perspective from simple exact models.   总被引:20,自引:12,他引:20       下载免费PDF全文
General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse.  相似文献   
908.
The phenolamines tyramine and octopamine are decarboxylation products of the amino acid tyrosine. Although tyramine is the biological precursor of octopamine, both compounds are independent neurotransmitters, acting through various G-protein coupled receptors. Especially, octopamine modulates a plethora of behaviors, peripheral and sense organs. Both compounds are believed to be homologues of their vertebrate counterparts adrenaline and noradrenaline. They modulate behaviors and organs in a coordinated way, which allows the insects to respond to external stimuli with a fine tuned adequate response. As these two phenolamines are the only biogenic amines whose physiological significance is restricted to invertebrates, the attention of pharmacologists was focused on the corresponding receptors, which are still believed to represent promising targets for new insecticides. Recent progress made on all levels of octopamine/tyramine research enabled us to better understand the molecular events underlying the control of complex behaviors.  相似文献   
909.
Classically, HLA-DR expressed on antigen presenting cells (APC) initiates lymphocyte activation via presentation of peptides to TCR bearing CD4+ T-Cells. Here we demonstrate that HLA-DR alpha 2 domain (sHLA-DRalpha2) also induces negative signals by engaging TIRC7 on lymphocytes. This interaction inhibits proliferation and induces apoptosis in CD4+ and CD8+ T-cells via activation of the intrinsic pathway. Proliferation inhibition is associated with SHP-1 recruitment by TIRC7, decreased phosphorylation of STAT4, TCR-zeta chain & ZAP70, and inhibition of IFN-gamma and FasL expression. HLA-DRalpha2 and TIRC7 co-localize at the APC-T cell interaction site. Triggering HLA-DR - TIRC7 pathway demonstrates that sHLA-DRalpha2 treatment inhibits proinflammatory-inflammatory cytokine expression in APC & T cells after lipopolysaccaride (LPS) stimulation in vitro and induces apoptosis in vivo. These results suggest a novel antiproliferative role for HLA-DR mediated via TIRC7, revise the notion of an exclusive stimulatory interaction of HLA-DR with CD4+ T cells and highlights a novel physiologically relevant regulatory pathway.  相似文献   
910.
The developmental characteristics of a transgenic tobacco line (BIK62) expressing the ipt cytokinin-biosynthetic gene under the control of a tagged promoter were analysed. In situ hybridization and cytokinin immunocytochemistry revealed that the ipt gene was mainly expressed in the axillary buds after the floral transition. The ipt-expressing axillary buds presented morphological alterations such as short and narrow scale-leaflets, and swollen internodes filled with starch grains, giving rise to short and tuberized lateral branches. In addition, the modification of the endogenous cytokinin balance in the axillary meristems resulted in a fast rate of leaf initiation and cytokinins accumulated mostly in the lateral zones of the reactivated axillary meristems, suggesting a role in leaf organogenesis. Cell cycle analysis revealed that the reactivated axillary meristems were characterized by predominant S+G2 nuclei. Terminal internodes displayed low levels of hexose and sucrose concomitant with starch accumulation. Extracellular invertases (EC 3.1.26) were also present in higher amounts in the tuberizing internodes compared to the axillary buds of wild-type tobacco. These results underline the role of cytokinins in cell cycle regulation and in the creation of a sink--source effect. They also provide new information about cytokinin involvement in the process of tuberization and their overproduction in axillary buds giving rise to tuberized lateral branches in a naturally non-tuberizing species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号