首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62312篇
  免费   5970篇
  国内免费   22篇
  68304篇
  2023年   262篇
  2022年   528篇
  2021年   1074篇
  2020年   669篇
  2019年   854篇
  2018年   1034篇
  2017年   896篇
  2016年   1520篇
  2015年   2522篇
  2014年   2833篇
  2013年   3277篇
  2012年   4390篇
  2011年   4215篇
  2010年   2685篇
  2009年   2433篇
  2008年   3513篇
  2007年   3568篇
  2006年   3352篇
  2005年   3182篇
  2004年   3117篇
  2003年   2866篇
  2002年   2800篇
  2001年   928篇
  2000年   764篇
  1999年   864篇
  1998年   882篇
  1997年   613篇
  1996年   549篇
  1995年   494篇
  1994年   536篇
  1993年   515篇
  1992年   666篇
  1991年   548篇
  1990年   527篇
  1989年   521篇
  1988年   480篇
  1987年   444篇
  1986年   434篇
  1985年   412篇
  1984年   465篇
  1983年   434篇
  1982年   448篇
  1981年   409篇
  1980年   411篇
  1979年   347篇
  1978年   325篇
  1977年   288篇
  1976年   277篇
  1974年   262篇
  1973年   235篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not.  相似文献   
22.
The results of recent randomized trials to test the influence of antioxidants on coronary-event rates and prognosis in patients with coronary-artery disease were disappointing. In none of these studies did the use of vitamin E improve prognosis. In contrast, treatment of coronary-artery disease with angiotensin-converting-enzyme (ACE) inhibitors reduced coronary-event rates and improved prognosis. ACE inhibition prevents the formation of angiotensin II, which has been shown to be a potent stimulus of superoxide-producing enzymes in atherosclerosis. The findings suggest that inhibition of superoxide production at enzymatic levels, rather than symptomatic superoxide scavenging, may be the better choice of treatment.  相似文献   
23.
The time dependency of the spontaneous aggregation of the fibrillogenic β-Amyloid peptide, Aβ1–40, was measured by turbidity, circular dichroism, HPLC, and fluorescence polarization. The results by all methods were comparable and they were most consistent with a kinetic model where the peptide first slowly forms an activated monomeric derivative (AM), which is the only species able to initiate, by tetramerization, the formation of linear aggregates. The anti-Aβ antibody 6E10, raised against residues 1–17, at concentrations of 200–300 nM delayed significantly the aggregation of 50 μM amyloid peptide. The anti–Aβ antibody 4G8, raised against residues 17–24, was much less active in that respect, while the antibody A162, raised against the C-terminal residues 39–43 of the full-length Aβ was totally inactive at those concentrations. Concomitant with the aggregation experiments, we also measured the time dependency of the Aβ1–40–induced toxicity toward SH-EP1 cells and hippocampal neurons, evaluated by SYTOX Green fluorescence, lactate dehydrogenase release, and activation of caspases. The extent of cell damage measured by all methods reached a maximum at the same time and this maximum coincided with that of the concentration of AM. According to the kinetic scheme, the latter is the only transient peptide species whose concentration passes through a maximum. Thus, it appears that the toxic species of Aβ1–40 is most likely the same transient activated monomer that is responsible for the nucleation of fibril formation. These conclusions should provide a structural basis for understanding the toxicity of Aβ1–40 in vitro and possibly in vivo.  相似文献   
24.
25.
Four pigeons responded under a progressive-delay procedure. In a signaled-delay condition, a chained variable interval (VI) 30-s progressive time (PT) 4-s schedule was arranged; in an unsignaled-delay condition, a tandem VI 30-s PT 4-s schedule was arranged. Two pigeons experienced a signaled-unsignaled-signaled sequence; whereas, two pigeons experienced an unsignaled-signaled-unsignaled sequence. Effects of saline and d-amphetamine were determined under each condition. At intermediate doses (1.0 and 1.78 m/kg) delay functions were shallower, area under the curve was increased, and, when possible, break points were increased compared to saline; these effects were not systematically related to signaling conditions. These effects on control by delay often were accompanied by decreased response rates at 0 s. These results suggest that stimulus conditions associated with the delay may not play a crucial role in effects of d-amphetamine and other stimulants on behavior controlled by reinforcement delay.  相似文献   
26.
27.
28.
The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site.  相似文献   
29.
30.
The physical mechanism of calcium pump regulation in the heart.   总被引:4,自引:3,他引:1  
The Ca-ATPase in the cardiac sarcoplasmic reticulum membrane is regulated by an amphipathic transmembrane protein, phospholamban. We have used time-resolved phosphorescence anisotropy to detect the microsecond rotational dynamics, and thereby the self-association, of the Ca-ATPase as a function of phospholamban phosphorylation and physiologically relevant calcium levels. The phosphorylation of phospholamban increases the rotational mobility of the Ca-ATPase in the sarcoplasmic reticulum bilayer, due to a decrease in large-scale protein association, with a [Ca2+] dependence parallel to that of enzyme activation. These results support a model in which phospholamban phosphorylation or calcium free the enzyme from a kinetically unfavorable associated state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号