首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61087篇
  免费   5857篇
  国内免费   23篇
  2023年   245篇
  2022年   510篇
  2021年   1012篇
  2020年   639篇
  2019年   815篇
  2018年   1004篇
  2017年   870篇
  2016年   1486篇
  2015年   2473篇
  2014年   2731篇
  2013年   3200篇
  2012年   4257篇
  2011年   4110篇
  2010年   2608篇
  2009年   2365篇
  2008年   3420篇
  2007年   3476篇
  2006年   3290篇
  2005年   3123篇
  2004年   3067篇
  2003年   2805篇
  2002年   2730篇
  2001年   915篇
  2000年   740篇
  1999年   838篇
  1998年   869篇
  1997年   602篇
  1996年   525篇
  1995年   490篇
  1994年   524篇
  1993年   515篇
  1992年   645篇
  1991年   526篇
  1990年   523篇
  1989年   522篇
  1988年   475篇
  1987年   445篇
  1986年   436篇
  1985年   419篇
  1984年   462篇
  1983年   428篇
  1982年   454篇
  1981年   416篇
  1980年   437篇
  1979年   368篇
  1978年   358篇
  1977年   304篇
  1976年   296篇
  1975年   243篇
  1974年   281篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.  相似文献   
115.
The Menominee River, a boundary water between northeastern Wisconsin and the upper peninsula of Michigan, contains a sport fishery for lake sturgeon, Acipenser fulvescens, which is jointly managed by both states. Previous studies indicated that overfishing of this sturgeon population was occurring, and this investigation examined the impact of new angling regulations. The sturgeon population is fragmented into sections by hydroelectric dams. Stocks from the three main sections of the river were compared before and after implementation of the new angling regulations. Records of the legal harvest of lake sturgeon from each river section were obtained through a registration system, which has been in effect since 1983, and estimates of exploitation were derived from these data. Overfishing of lake sturgeon stocks in two of the three sections of the Menominee River is still occurring. Management recommendations are made which would allow for a continued fishery by providing further protection to the stocks.  相似文献   
116.
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.  相似文献   
117.
118.
119.
120.
Cystathionine gamma-synthase catalyses the committed step of de novo methionine biosynthesis in micro-organisms and plants, making the enzyme an attractive target for the design of new antibiotics and herbicides. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum has been solved by Patterson search techniques using the structure of Escherichia coli cystathionine gamma-synthase. The model was refined at 2.9 A resolution to a crystallographic R -factor of 20.1 % (Rfree25.0 %). The physiological substrates of the enzyme, L-homoserine phosphate and L-cysteine, were modelled into the unliganded structure. These complexes support the proposed ping-pong mechanism for catalysis and illustrate the dissimilar substrate specificities of bacterial and plant cystathionine gamma-synthases on a molecular level. The main difference arises from the binding modes of the distal substrate groups (O -acetyl/succinyl versusO -phosphate). Central in fixing the distal phosphate of the plant CGS substrate is an exposed lysine residue that is strictly conserved in plant cystathionine gamma-synthases whereas bacterial enzymes carry a glycine residue at this position. General insight regarding the reaction specificity of transsulphuration enzymes is gained by the comparison to cystathionine beta-lyase from E. coli, indicating the mechanistic importance of a second substrate binding site for L-cysteine which leads to different chemical reaction types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号