首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60211篇
  免费   5762篇
  国内免费   22篇
  65995篇
  2023年   247篇
  2022年   514篇
  2021年   1023篇
  2020年   641篇
  2019年   825篇
  2018年   1001篇
  2017年   876篇
  2016年   1495篇
  2015年   2470篇
  2014年   2729篇
  2013年   3195篇
  2012年   4253篇
  2011年   4114篇
  2010年   2606篇
  2009年   2360篇
  2008年   3414篇
  2007年   3474篇
  2006年   3280篇
  2005年   3111篇
  2004年   3045篇
  2003年   2790篇
  2002年   2716篇
  2001年   887篇
  2000年   730篇
  1999年   830篇
  1998年   863篇
  1997年   596篇
  1996年   526篇
  1995年   480篇
  1994年   504篇
  1993年   502篇
  1992年   635篇
  1991年   519篇
  1990年   502篇
  1989年   498篇
  1988年   444篇
  1987年   412篇
  1986年   406篇
  1985年   384篇
  1984年   443篇
  1983年   409篇
  1982年   426篇
  1981年   389篇
  1980年   398篇
  1979年   319篇
  1978年   308篇
  1977年   267篇
  1976年   263篇
  1974年   236篇
  1973年   213篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
992.
The instantaneous rate of photosynthetic CO2 assimilation in C3 plants has generally been studied in model systems such as isolated chloroplasts and algae. From these studies and from theoretical analyses of gas exchange behavior it is now possible to study the biochemistry of photosynthesis in intact leaves using a combination of methods, most of which are nondestructive. The limitations to the rate of photosynthesis can be divided among three general classes: (1) the supply or utilization of CO2, (2) the supply or utilization of light, and (3) the supply or utilization of phosphate. The first limitation is most readily studied by determining how the CO2 assimilation rate varies with the partial pressure of CO2 inside the leaf. The second limitation can be studied by determining the quantum requirement of photosynthesis. The third limitation is most easily detected as a loss of O2 sensitivity of photosynthesis. Measurement of fluorescence from intact leaves can give additional information about the various limitations. These methods are all non-destructive and so can be observed repeatedly as the environment of a leaf is changed. In addition, leaves can be quick-frozen and metabolite concentrations then measured to give more information about the limitations to intact leaf photosynthesis rates. In this review the physics and biochemistry of photosynthesis in intact C3 leaves, and the interface between physiology and photosynthesis—triose phosphate utilization—are discussed.  相似文献   
993.
Summary The secondary culture of non-transformed parenchymal hepatocytes has not been possible. STO feeder cell-dependent secondary cultures of fetal pig hepatocytes were established by colony isolation from primary cultures of 26-d fetal livers. The liver cells had the typical polygonal morphology of parenchymal hepatocytes. They also spontaneously differentiated to form small biliary canaliculi between individual cells or progressed further to large multicellular duct-like structures or cells undergoing gross lipid accumulation and secretion. The secondary hepatocyte cultures expressed alpha-fetoprotein (AFP), albumin, and β-fibrinogen mRNA, and conditioned medium from the cells contained elevated levels of transferrin and albumin. STO feeder cell co-culture may be useful for the sustainable culture of hepatocytes from other species.  相似文献   
994.
995.
Succinate is known to act as an inflammatory signal in classically activated macrophages through stabilization of HIF-1α leading to IL-1β production. Relevant to this, hypoxia is known to drive succinate accumulation and release into the extracellular milieu. The metabolic alterations associated with succinate release during inflammation and under hypoxia are poorly understood. Data are presented showing that Mycoplasma arginini infection of VM-M3 cancer cells enhances the Warburg effect associated with succinate production in mitochondria and eventual release into the extracellular milieu. We investigated how succinate production and release was related to the changes of other soluble metabolites, including itaconate and 2-HG. Furthermore, we found that hypoxia alone could induce succinate release from the VM-M3 cells and that this could occur in the absence of glucose-driven lactate production. Our results elucidate metabolic pathways responsible for succinate accumulation and release in cancer cells, thus identifying potential targets involved in both inflammation and hypoxia. This article is part of a Special Issue entitled 20th European Bioenergetics Conference, edited by László Zimányi and László Tretter.  相似文献   
996.
Coral Reefs - Algal turfs are expected to increasingly dominate the benthos of coral reefs in the Anthropocene, becoming important sources of reef productivity. The sediments trapped within algal...  相似文献   
997.
Summary A cDNA copy of the M2 dsRNA encoding the K2 killer toxin ofSaccharomyces cerevisiae was expressed in yeast using the yeastADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.  相似文献   
998.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5'-d(AAATATTTAAAATTA-(T)10]-3' (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly[d(A)].poly[d(T)] and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region (1600-1700 cm-1) implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent wtih formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogenous sequence and high A,T content are observed at 843 and 1092 cm-1 in the spectra of the parallel-stranded duplex. The 843-cm-1 band is due to the presence of a sizable population of furanose rings in the C2'-endo conformation. Significant changes observed in the regions from 1150 to 1250 cm-1 and from 1340 to 1400 cm-1 in the spectra of the parallel-stranded duplex are attributed to variations in backbone torsional and glycosidic angles and base stacking.  相似文献   
999.
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号