全文获取类型
收费全文 | 548篇 |
免费 | 45篇 |
专业分类
593篇 |
出版年
2023年 | 5篇 |
2022年 | 3篇 |
2021年 | 9篇 |
2020年 | 8篇 |
2019年 | 7篇 |
2018年 | 8篇 |
2017年 | 7篇 |
2016年 | 10篇 |
2015年 | 27篇 |
2014年 | 38篇 |
2013年 | 32篇 |
2012年 | 59篇 |
2011年 | 46篇 |
2010年 | 31篇 |
2009年 | 19篇 |
2008年 | 31篇 |
2007年 | 35篇 |
2006年 | 31篇 |
2005年 | 18篇 |
2004年 | 23篇 |
2003年 | 18篇 |
2002年 | 23篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1989年 | 2篇 |
1985年 | 2篇 |
1983年 | 5篇 |
1980年 | 3篇 |
1978年 | 2篇 |
1977年 | 6篇 |
1976年 | 2篇 |
1975年 | 3篇 |
1974年 | 5篇 |
1970年 | 4篇 |
1968年 | 2篇 |
1955年 | 3篇 |
1950年 | 2篇 |
1948年 | 2篇 |
1942年 | 2篇 |
1941年 | 2篇 |
1940年 | 3篇 |
1937年 | 2篇 |
排序方式: 共有593条查询结果,搜索用时 15 毫秒
11.
Britta Spanier Mandy Starke Fabian Higel Siegfried Scherer Thilo M. Fuchs 《Applied and environmental microbiology》2010,76(18):6277-6285
Caenorhabditis elegans is a validated model to study bacterial pathogenicity. We report that Yersinia enterocolitica strains (biovar 2, serovar O:9) and WA314 (biovar 1B, serovar O:8) kill C. elegans when feeding on the pathogens for at least 15 min before transfer to the feeding strain Escherichia coli OP50. The killing by Yersinia enterocolitica requires viable bacteria and, in contrast to that by Yersinia pestis and Yersinia pseudotuberculosis strains, is biofilm independent. The deletion of tcaA encoding an insecticidal toxin resulted in an OP50-like life span of C. elegans, indicating an essential role of TcaA in the nematocidal activity of Y. enterocolitica. TcaA alone is not sufficient for nematocidal activity because E. coli DH5α overexpressing TcaA did not result in a reduced C. elegans life span. Spatial-temporal analysis of C. elegans infected with green fluorescent protein-labeled Y. enterocolitica strains showed that Y. enterocolitica colonizes the nematode intestine, leading to an extreme expansion of the intestinal lumen. By low-dose infection with W22703 or DH5α followed by transfer to E. coli OP50, proliferation of Y. enterocolitica, but not E. coli, in the intestinal lumen of the nematode was observed. The titer of W22703 cells within the worm increased to over 106 per worm 4 days after infection while a significantly lower number of a tcaA knockout mutant was recovered. A strong expression of tcaA was observed during the first 5 days of infection. Y. enterocolitica WA314 (biovar 1B, serovar O:8) mutant strains lacking the yadA, inv, yopE, and irp1 genes known to be important for virulence in mammals were not attenuated or only slightly attenuated in their toxicity toward the nematode, suggesting that these factors do not play a significant role in the colonization and persistence of this pathogen in nematodes. In summary, this study supports the hypothesis that C. elegans is a natural host and nutrient source of Y. enterocolitica.Yersinia enterocolitica belongs to the family of Enterobacteriaceae and is a psychrotolerant human pathogen that causes gastrointestinal syndromes ranging from acute enteritis to mesenteric lymphadenitis ( W227035). It infects a number of mammals, and swine was identified as a major source for human infection (6). A multiphasic life cycle, which comprises a free-living phase and several host-associated phases, including cold-blooded and warm-blooded hosts, appears to be characteristic for biovars 1B and 2 to 5 of Y. enterocolitica (7, 24).Nonmammalian host organisms including Dictyostelium discoideum, Drosophila melanogaster, or Caenorhabditis elegans are increasingly used to study host-pathogen interactions (16, 26). Due to the obvious parallels between the mammalian and invertebrate defense mechanisms, it has been suggested that the bacteria-invertebrate interaction has shaped the evolution of microbial pathogenicity (53). Several human pathogens including Gram-positive and Gram-negative bacteria infect and kill the soil nematode C. elegans when they are supplied as a nutrient source (42). For example, Streptococcus pneumoniae (4), Listeria monocytogenes (50), extraintestinal Escherichia coli (15), and Staphylococcus aureus (43) but not Bacillus subtilis have been shown to kill the nematode. Upon infection of C. elegans with Enterococcus faecalis, Gram-positive virulence-related factors as well as putative antimicrobials have been identified (20, 35). The extensive conservation in virulence mechanisms directed against invertebrates as well as mammals was demonstrated using a screen with Pseudomonas aeruginosa (30). In this study, 10 of 13 genes whose knockout attenuated the nematode killing were also required for full virulence in a mouse model, confirming the suitability of the C. elegans model to study bacterial pathogenicity. C. elegans is also colonized by Salmonella enterica serovar Typhimurium (S. Typhimurium). This process requires Salmonella virulence factors and was used to study the innate immune response of the nematode (1, 2, 49).The effect of pathogenic Yersinia spp. on C. elegans has also been investigated. It could be demonstrated that both Yersinia pestis and Yersinia pseudotuberculosis block food intake by creating a biofilm around the worm''s mouth (13, 27). This biofilm formation requires the hemin storage locus (hms) and has been suggested to be responsible for the blockage of the digestive tract following uptake by fleas, thus acting as a bacterial defense against predation by invertebrates. In a study with 40 Y. pseudotuberculosis strains, one-quarter of them caused an infection of C. elegans by biofilm formation on the worm head (27). In contrast, a similar effect was not observed following nematode infection with 15 Y. enterocolitica strains. Using a Y. pestis strain lacking the hms genes, it could be demonstrated that this mutant can infect and kill the nematode by a biofilm-independent mechanism that includes the accumulation of Y. pestis in the intestine of the worm (47). This pathogenesis model was applied to show that putative virulence factors such as YapH, OmpT, or a metalloprotease, Y3857, but not the virulence plasmids pCD1 and pPCP1, are required for Y. pestis virulence in C. elegans. Six yet unknown genes required for full virulence in C. elegans were also identified, and one of them appeared to be a virulence factor in the mouse infection model.C. elegans has not been used to study the pathogenicity properties of Y. enterocolitica, mainly due to the fact that many of its virulence factors are upregulated at 37°C in comparison to growth at lower temperatures while C. elegans cannot be cultivated at temperatures above 25°C. In this study, we examined for the first time the infection of C. elegans by Y. enterocolitica strains, demonstrating that this pathogen colonizes and kills C. elegans and that the insecticidal toxin TcaA, which is expressed only at ambient temperature, is required for full nematocidal activity. 相似文献
12.
Thilo Waag Christoph Gelhaus Jennifer Rath August Stich Matthias Leippe Tanja Schirmeister 《Bioorganic & medicinal chemistry letters》2010,20(18):5541-5543
Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure–activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei. 相似文献
13.
Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts 总被引:1,自引:0,他引:1 下载免费PDF全文
Borner GH Sherrier DJ Weimar T Michaelson LV Hawkins ND Macaskill A Napier JA Beale MH Lilley KS Dupree P 《Plant physiology》2005,137(1):104-116
The trafficking and function of cell surface proteins in eukaryotic cells may require association with detergent-resistant sphingolipid- and sterol-rich membrane domains. The aim of this work was to obtain evidence for lipid domain phenomena in plant membranes. A protocol to prepare Triton X-100 detergent-resistant membranes (DRMs) was developed using Arabidopsis (Arabidopsis thaliana) callus membranes. A comparative proteomics approach using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry revealed that the DRMs were highly enriched in specific proteins. They included eight glycosylphosphatidylinositol-anchored proteins, several plasma membrane (PM) ATPases, multidrug resistance proteins, and proteins of the stomatin/prohibitin/hypersensitive response family, suggesting that the DRMs originated from PM domains. We also identified a plant homolog of flotillin, a major mammalian DRM protein, suggesting a conserved role for this protein in lipid domain phenomena in eukaryotic cells. Lipid analysis by gas chromatography-mass spectrometry showed that the DRMs had a 4-fold higher sterol-to-protein content than the average for Arabidopsis membranes. The DRMs were also 5-fold increased in sphingolipid-to-protein ratio. Our results indicate that the preparation of DRMs can yield a very specific set of membrane proteins and suggest that the PM contains phytosterol and sphingolipid-rich lipid domains with a specialized protein composition. Our results also suggest a conserved role of lipid modification in targeting proteins to both the intracellular and extracellular leaflet of these domains. The proteins associated with these domains provide important new experimental avenues into understanding plant cell polarity and cell surface processes. 相似文献
14.
Henryk Flachowsky Iris Szankowski Thilo C. Fischer Klaus Richter Andreas Peil Monika Höfer Claudia Dörschel Sylvia Schmoock Achim E. Gau Heidrun Halbwirth Magda-Viola Hanke 《Planta》2010,231(3):623-635
Transgenic apple plants (Malus × domestica cv. ‘Holsteiner Cox’) overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Greenhouse plants investigated in this study exhibit altered phenotypes with regard to growth habit and resistance traits. Lc-transgenic plants show reduced size, transversal gravitropism of lateral shoots, reduced trichome development, and frequently reduced shoot diameter and abnormal leaf development with fused leaves. Such phenotypes seem to be in accordance with a direct or an indirect effect on polar-auxin-transport in the transgenic plants. Furthermore, leaves often develop necrotic lesions resembling hypersensitive response lesions. In tests, higher resistance against fire blight (caused by the bacterium Erwinia amylovora) and against scab (caused by the fungus Venturia inaequalis) is observed. These phenotypes are discussed with respect to the underlying altered physiology of the Lc-transgenic plants. The results are expected to be considered in apple breeding strategies. 相似文献
15.
Glutamatergic plasticity by synaptic delivery of GluR-B(long)-containing AMPA receptors 总被引:3,自引:0,他引:3
Kolleker A Zhu JJ Schupp BJ Qin Y Mack V Borchardt T Köhr G Malinow R Seeburg PH Osten P 《Neuron》2003,40(6):1199-1212
Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus. 相似文献
16.
Jan Plue Pieter De Frenne Kamal Acharya Jrg Brunet Olivier Chabrerie Guillaume Decocq Martin Diekmann Bente J. Graae Thilo Heinken Martin Hermy Annette Kolb Isgard Lemke Jaan Liira Tobias Naaf Anna Shevtsova Kris Verheyen Monika Wulf Sara A. O. Cousins 《Global Ecology and Biogeography》2013,22(10):1106-1117
17.
18.
Nadine Herr Maximilian Mauler Thilo Witsch Daniela Stallmann Stefanie Schmitt Julius Mezger Christoph Bode Daniel Duerschmied 《PloS one》2014,9(2)
ObjectiveActivated platelets release serotonin at sites of inflammation where it acts as inflammatory mediator and enhances recruitment of neutrophils. Chronic treatment with selective serotonin reuptake inhibitors (SSRI) depletes the serotonin storage pool in platelets, leading to reduced leukocyte recruitment in murine experiments. Here, we examined the direct and acute effects of SSRI on leukocyte recruitment in murine peritonitis.MethodsC57Bl/6 and Tph1−/− (Tryptophan hydroxylase1) mice underwent acute treatment with the SSRI fluoxetine or vehicle. Serotonin concentrations were measured by ELISA. Leukocyte rolling and adhesion on endothelium was analyzed by intravital microscopy in mesentery venules with and without lipopolysaccharide challenge. Leukocyte extravasation in sterile peritonitis was measured by flow cytometry of abdominal lavage fluid.ResultsPlasma serotonin levels were elevated 2 hours after fluoxetine treatment (0.70±0.1 µg/ml versus 0.27±0.1, p = 0.03, n = 14), while serum serotonin did not change. Without further stimulation, acute fluoxetine treatment increased the number of rolling leukocytes (63±8 versus 165±17/0.04 mm2min−1) and decreased their velocity (61±6 versus 28±1 µm/s, both p<0.0001, n = 10). In Tph1−/− mice leukocyte rolling was not significantly influenced by acute fluoxetine treatment. Stimulation with lipopolysaccharide decreased rolling velocity and induced leukocyte adhesion, which was enhanced after fluoxetine pretreatment (27±3 versus 36±2/0.04 mm2, p = 0.008, n = 10). Leukocyte extravasation in sterile peritonitis, however, was not affected by acute fluoxetine treatment.ConclusionsAcute fluoxetine treatment increased plasma serotonin concentrations and promoted leukocyte-endothelial interactions in-vivo, suggesting that serotonin is a promoter of acute inflammation. E-selectin was upregulated on endothelial cells in the presence of serotonin, possibly explaining the observed increase in leukocyte-endothelial interactions. However transmigration of neutrophils in sterile peritonitis was not affected by higher serotonin concentrations, indicating that the effect of fluoxetine was restricted to early steps in the leukocyte recruitment. Whether SSRI use in humans alters leukocyte recruitment remains to be investigated. 相似文献
19.
LJ Schurgers IA Joosen EM Laufer ML Chatrou M Herfs MH Winkens R Westenfeld V Veulemans T Krueger CM Shanahan W Jahnen-Dechent E Biessen J Narula C Vermeer L Hofstra CP Reutelingsperger 《PloS one》2012,7(8):e43229