首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   44篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   10篇
  2015年   27篇
  2014年   38篇
  2013年   32篇
  2012年   59篇
  2011年   45篇
  2010年   30篇
  2009年   19篇
  2008年   30篇
  2007年   34篇
  2006年   31篇
  2005年   18篇
  2004年   23篇
  2003年   17篇
  2002年   25篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1970年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
81.
The development of myogenic cells is mainly determined by expression of two myogenic factors, Myf5 and Myod1 (MyoD), which genetically compensate for each other during embryogenesis. Here, we demonstrate by conditional cell ablation in mice that Myf5 determines a distinct myogenic cell population, which also contains some Myod1-positive cells. Ablation of this lineage uncovers the presence of a second autonomous myogenic lineage, which superseded Myf5-dependent myogenic cells and expressed Myod1. By contrast, ablation of myogenin-expressing cells erased virtually all differentiated muscle cells, indicating that some aspects of the myogenic program are shared by most skeletal muscle cells. We conclude that Myf5 and Myod1 define different cell lineages with distinct contributions to muscle precursor cells and differentiated myotubes. Individual myogenic cell lineages seem to substitute for each other within the developing embryo.  相似文献   
82.
83.
Long food chains are in general chaotic   总被引:1,自引:0,他引:1  
The question whether chaos exists in nature is much debated. In this paper we prove that chaotic parameter regions exist generically in food chains of length greater than three. While nonchaotic dynamics is also possible, the presence of chaotic parameter regions indicates that chaotic dynamics is likely. We show that the chaotic regions survive even at high exponents of closure. Our results have been obtained using a general food chain model that describes a large class of different food chains. The existence of chaos in models of such generality can be deduced from the presence of certain bifurcations of higher codimension.  相似文献   
84.
Ongoing clinical studies on patients recently implanted with the auditory midbrain implant (AMI) into the inferior colliculus (IC) for hearing restoration have shown that these patients do not achieve performance levels comparable to cochlear implant patients. The AMI consists of a single-shank array (20 electrodes) for stimulation along the tonotopic axis of the IC. Recent findings suggest that one major limitation in AMI performance is the inability to sufficiently activate neurons across the three-dimensional (3-D) IC. Unfortunately, there are no currently available 3-D array technologies that can be used for clinical applications. More recently, there has been a new initiative by the European Commission to fund and develop 3-D chronic electrode arrays for science and clinical applications through the NeuroProbes project that can overcome the bulkiness and limited 3-D configurations of currently available array technologies. As part of the NeuroProbes initiative, we investigated whether their new array technology could be potentially used for future AMI patients. Since the NeuroProbes technology had not yet been tested for electrical stimulation in an in vivo animal preparation, we performed experiments in ketamine-anesthetized guinea pigs in which we inserted and stimulated a NeuroProbes array within the IC and recorded the corresponding neural activation within the auditory cortex. We used 2-D arrays for this initial feasibility study since they were already available and were sufficient to access the IC and also demonstrate effective activation of the central auditory system. Based on these encouraging results and the ability to develop customized 3-D arrays with the NeuroProbes technology, we can further investigate different stimulation patterns across the ICC to improve AMI performance.  相似文献   
85.
86.
Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity is still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinally, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds.  相似文献   
87.
Unlike normal differentiated cells, tumor cells metabolize glucose via glycolysis under aerobic conditions, a hallmark of cancer known as the Warburg effect. Cells lacking the commonly mutated tumor suppressor PTEN exhibit a glycolytic phenotype reminiscent of the Warburg effect. This has been traditionally attributed to the hyperactivation of PI3K/Akt signaling that results from PTEN loss. Here, we propose a novel mechanism whereby the loss of PTEN negatively affects the activity of the E3 ligase APC/C-Cdh1, resulting in the stabilization of the enzyme PFKFB3 and increased synthesis of its product fructose 2,6-bisphosphate (F2,6P2). We discovered that when compared with wild-type cells, PTEN knock-out mouse embryonic fibroblasts (PTEN KO MEF) have 2–3-fold higher concentrations of F2,6P2, the most potent allosteric activator of the glycolytic enzyme phosphofructokinase-1 (PFK-1). Reintroduction of either wild-type or phosphatase mutant PTEN in the PTEN KO cells effectively lowers F2,6P2 to the wild-type levels and reduces their lactate production. PTEN KO cells were found to have high protein levels of PFKFB3, which directly contribute to the increased concentrations of F2,6P2. PTEN enhances interaction between PFKFB3 and Cdh1, and overexpression of Cdh1 down-regulates the PFKFB3 protein level in wild-type, but not in PTEN-deficient cells. Importantly, we found that the degradation of endogenous PFKFB3 in PTEN KO cells occurs at a slower rate than in wild-type cells. Our results suggest an important role for F2,6P2 in the metabolic reprogramming of PTEN-deficient cells that has important consequences for cell proliferation.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号