首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3688篇
  免费   528篇
  2021年   52篇
  2019年   33篇
  2018年   52篇
  2017年   41篇
  2016年   44篇
  2015年   88篇
  2014年   107篇
  2013年   148篇
  2012年   199篇
  2011年   194篇
  2010年   125篇
  2009年   106篇
  2008年   164篇
  2007年   185篇
  2006年   274篇
  2005年   147篇
  2004年   137篇
  2003年   132篇
  2002年   130篇
  2001年   125篇
  2000年   103篇
  1999年   67篇
  1998年   48篇
  1996年   46篇
  1995年   36篇
  1994年   31篇
  1993年   31篇
  1992年   73篇
  1991年   71篇
  1990年   74篇
  1989年   91篇
  1988年   69篇
  1987年   68篇
  1986年   45篇
  1985年   58篇
  1984年   50篇
  1983年   45篇
  1982年   31篇
  1981年   31篇
  1979年   50篇
  1978年   46篇
  1977年   39篇
  1976年   36篇
  1975年   44篇
  1974年   43篇
  1973年   42篇
  1972年   37篇
  1971年   36篇
  1970年   39篇
  1969年   34篇
排序方式: 共有4216条查询结果,搜索用时 995 毫秒
991.
Successful behavior requires selection and preferred processing of relevant sensory information. The cortical representation of relevant sensory information has been related to neuronal oscillations in the gamma frequency band. Pain is of invariably high behavioral relevance and, thus, nociceptive stimuli receive preferred processing. Here, by using magnetoencephalography, we show that selective nociceptive stimuli induce gamma oscillations between 60 and 95 Hz in primary somatosensory cortex. Amplitudes of pain-induced gamma oscillations vary with objective stimulus intensity and subjective pain intensity. However, around pain threshold, perceived stimuli yielded stronger gamma oscillations than unperceived stimuli of equal stimulus intensity. These results show that pain induces gamma oscillations in primary somatosensory cortex that are particularly related to the subjective perception of pain. Our findings support the hypothesis that gamma oscillations are related to the internal representation of behaviorally relevant stimuli that should receive preferred processing.  相似文献   
992.
Adenoviruses (Ads) are important human pathogens and valuable gene delivery vehicles. We report here the crystal structure of the species B Ad11 knob complexed with the Ad11-binding region of its receptor CD46. The conformation of bound CD46 differs profoundly from its unbound state, with the bent surface structure straightened into an elongated rod. This mechanism of interaction is likely to be conserved among many pathogens that target CD46 or related molecules.  相似文献   
993.
Covalent addition of nitric oxide (NO) to Cys-sulfur in proteins, or S-nitrosylation, plays pervasive roles in the physiological and pathophysiological modulation of mammalian protein functions. Knowledge of the specific protein Cys residues that undergo NO addition in different biological settings is fundamental to understanding NO-mediated signal transduction. Here, we describe in detail an MS-based proteomic protocol for facile, high-throughput and unbiased discovery of SNO-Cys residues in proteins from complex biological samples. The approach, termed SNOSID (SNO-Cys site identification), can be used to identify endogenous and chemically induced S-nitrosylation sites in proteins from tissues or cells. Identified SNO-Cys sites may provide insights into novel mechanisms and proteins that mediate NO bioactivities in health and disease. SNOSID builds on the biotin-switch method for covalent addition of disulfide-linked biotin at S-nitrosylation sites on proteins. Biotinylated proteins are then subjected to trypsinolysis and the resulting biotin-tagged peptides are affinity-captured on streptavidin-agarose. After selective elution with beta-mercaptoethanol, the peptides are sequenced using nanoflow liquid chromatography tandem mass spectrometry (nLC-MS/MS). Validation that identified peptide ions as originating from authentic NO-Cys-containing precursor proteins can be provided by establishing that these peptide ions are absent from control samples where S-NO bonds were subjected to prior photolysis, using a UV transilluminator. The protocol requires approximately 2 days for sample processing, including the incubation time for proteolysis. An additional 1-2 days is needed for sample analysis by nLC-MS/MS and data analysis/interpretation.  相似文献   
994.
995.
Eukaryotic mRNA decapping by Dcp2 is the penultimate step in several mRNA decay pathways. To understand regulation of Dcp2 by ligand interactions, we have assigned the backbone and sidechain methyl Ile (δ1), Leu and Val chemical shifts of the catalytic domain of the S. Cerevisiae enzyme.  相似文献   
996.
997.
998.
The micro structured deposition of vital cells is an important challenge in tissue engineering, biosensor technology, and in all research dealing with cell-cell and cell-substrate contacts. Hence, an inkjet printing technology has been developed to manufacture Au-based micro electrodes by sputter coating inversely printed polyester-foils. These electrodes feature minimal structure sizes of 35 microm and consist of an anode and a cathode part. They were used with fibrinogenic epithelial cell suspensions to deposit human keratinocytes (HaCaT), mouse fibroblasts (L-929) and the protein fibrin by applying DC voltage. Subsequently cells were electrophoretically attracted to the anode, following exactly its shape, while the insoluble fibrin was simultaneously precipitated due to the electrically mediated polymerization of the soluble fibrinogen molecule. Furthermore, it was demonstrated that this technique is suitable to co-deposit both cell types in a layered fashion. The lower voltage boundary for successful deposition was set at approximately 0.8 V needed for the conversion of fibrinogen into fibrin, while the upper voltage boundary was set at approximately 1.85 V, when commencing electrolysis inhibited the deposition of vital cells. Subsequent to the anodic cell-fibrin deposition, cells were cultivated for up to 4 days and then characterized by FDA+EB staining, methyl violet staining, MNF staining and SEM. The conversion from fibrinogen into fibrin was studied using ATR/FTIR.  相似文献   
999.
Global energy use and food production have increased nitrogen inputs to ecosystems worldwide, impacting plant community diversity, composition, and function. Previous studies show considerable variation across terrestrial herbaceous ecosystems in the magnitude of species loss following nitrogen (N) enrichment. What controls this variation remains unknown. We present results from 23 N-addition experiments across North America, representing a range of climatic, soil and plant community properties, to determine conditions that lead to greater diversity decline. Species loss in these communities ranged from 0 to 65% of control richness. Using hierarchical structural equation modelling, we found greater species loss in communities with a lower soil cation exchange capacity, colder regional temperature, and larger production increase following N addition, independent of initial species richness, plant productivity, and the relative abundance of most plant functional groups. Our results indicate sensitivity to N addition is co-determined by environmental conditions and production responsiveness, which overwhelm the effects of initial community structure and composition.  相似文献   
1000.
Terpenoids are one of the main classes of natural products. In plants, a large fraction of the terpenoids is present as nonvolatile glycosides. The terpene glycosides have attracted much attention as antimicrobials, flavor precursors, and detergents. They are either extracted from plant materials or are synthesized by chemical and biocatalytic methods. Up to now, biotechnological production of terpene glycosides is based on reversed hydrolysis performed by glycosidases. However, this method suffers from low yields as a matter of principle. Recently, the first uridine diphosphate‐glucose:monoterpenol β‐d ‐glucosyltransferase (GT) genes were cloned and characterized from grapevine (Vitis vinifera) and kiwi (Actinidia deliciosa). Heterologous expression in Escherichia coli yielded promiscuous GT enzymes that efficiently glucosylated primary monoterpenols, simple alcohols, and phenols. The GT enzymes differed in substrate preference and activity toward their terpenoid substrates. Biotransformation experiments confirmed the applicability of the novel GTs in biocatalytic processes for the production of these novel compounds. In the near future, terpene glucosides will become commercially available for food, cosmetic, and pharmaceutical industry due to improved biocatalytic processes involving GT enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号