首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   61篇
  2022年   7篇
  2021年   15篇
  2020年   13篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   20篇
  2015年   37篇
  2014年   39篇
  2013年   30篇
  2012年   27篇
  2011年   37篇
  2010年   35篇
  2009年   27篇
  2008年   22篇
  2007年   19篇
  2006年   15篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2002年   22篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1995年   3篇
  1994年   4篇
  1992年   8篇
  1991年   12篇
  1990年   11篇
  1989年   3篇
  1988年   10篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1974年   2篇
  1973年   7篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
排序方式: 共有589条查询结果,搜索用时 46 毫秒
21.
Summary A familial translocation t(X;21)(q2700;q11) is studied. A girl, trisomic for almost all the chromosome 21, has a mildly abnormal phenotype. A second girl, phenotypically abnormal, is monosomic for the juxtacentromeric region of chromosome 21 only. A comparison of the replication pattern and of the activity of superoxide dismutase (gene located on chromosome 21) shows a clear correlation between late replication, gene inactivation and phenotype expression of chromosome 21.This work has been supported by CNRS (ERA 47)  相似文献   
22.
23.
The inophore A23187 stimulates the translocation of calcium from an aqueous Hepes buffer into an organic immiscible phase. At saturating calcium concentrations, 2 molecules of ionophore seem to complex each atom of calcium. Consistent with such a stoichiometric behaviour, the apparent ratio of calcium-ionophore association to dissociation rate constants increases as the concentration of ionophore is raised. As a result, at low calcium concentrations, the amount of translocated calcium increases as a power function of A23187 concentration. When allowance is made for such a phenomenon, the relation between calcium translocation and concentration is characterized by usual substrate-receptor binding kinetics.  相似文献   
24.
25.
Local adaptation patterns have been found in many plants and animals, highlighting the genetic heterogeneity of species along their range of distribution. In the next decades, global warming is predicted to induce a change in the selective pressures that drive this adaptive variation, forcing a reshuffling of the underlying adaptive allele distributions. For species with low dispersion capacity and long generation time such as trees, the rapidity of the change could impede the migration of beneficial alleles and lower their capacity to track the changing environment. Identifying the main selective pressures driving the adaptive genetic variation is thus necessary when investigating species capacity to respond to global warming. In this study, we investigate the adaptive landscape of Fagus sylvatica along a gradient of populations in the French Alps. Using a double‐digest restriction‐site‐associated DNA (ddRAD) sequencing approach, we identified 7,000 SNPs from 570 individuals across 36 different sites. A redundancy analysis (RDA)‐derived method allowed us to identify several SNPs that were strongly associated with climatic gradients; moreover, we defined the primary selective gradients along the natural populations of F. sylvatica in the Alps. Strong effects of elevation and humidity, which contrast north‐western and south‐eastern site, were found and were believed to be important drivers of genetic adaptation. Finally, simulations of future genetic landscapes that used these findings allowed identifying populations at risk for F. sylvatica in the Alps, which could be helpful for future management plans.  相似文献   
26.
The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here, we investigate the role of membrane-cortex linkers on the extrusion of membrane tubes using computer simulations and experiments. In simulations, we find that the force for tube extrusion has a nonlinear dependence on the density of membrane-cortex attachments: at a range of low and intermediate linker densities, the force is not significantly influenced by the presence of the membrane-cortex attachments and resembles that of the bare membrane. For large concentrations of linkers, however, the force substantially increases compared with the bare membrane. In both cases, the linkers provided membrane tubes with increased stability against coalescence. We then pulled tubes from HEK cells using optical tweezers for varying expression levels of the membrane-cortex attachment protein Ezrin. In line with simulations, we observed that overexpression of Ezrin led to an increased extrusion force, while Ezrin depletion had a negligible effect on the force. Our results shed light on the importance of local protein rearrangements for membrane reshaping at nanoscopic scales.  相似文献   
27.
Polysaccharides make up about 75% of plant cell walls and can be broken down to produce sugar substrates (saccharification) from which a whole range of products can be obtained, including bioethanol. Cell walls also contain 5–10% of proteins, which could be used to tailor them for agroindustrial uses. Here we present cell wall proteomics data of Brachypodium distachyon, a model plant for temperate grasses. Leaves and culms were analyzed during active growth and at mature stage. Altogether, 559 proteins were identified by LC‐MS/MS and bioinformatics, among which 314 have predicted signal peptides. Sixty‐three proteins were shared by two organs at two developmental stages where they could play housekeeping functions. Differences were observed between organs and stages of development, especially at the level of glycoside hydrolases and oxidoreductases. Differences were also found between the known cell wall proteomes of B. distachyon, Oryza sativa, and the Arabidopsis thaliana dicot. Three glycoside hydrolases could be immunolocalized in cell walls using polyclonal antibodies against proteotypic peptides. Organ‐specific expression consistent with proteomics results could be observed as well as cell‐specific localization. Moreover, the high number of proteins of unknown function in B. distachyon cell wall proteomes opens new fields of research for monocot cell walls.  相似文献   
28.
DNA methylation changes are known to occur in gastric cancers and in premalignant lesions of the gastric mucosae. In order to examine variables associated with methylation levels, we quantitatively evaluated DNA methylation in tumors, non-tumor gastric mucosae, and in gastric biopsies at promoters of 5 genes with methylation alterations that discriminate gastric cancers from non-tumor epithelia (EN1, PCDH10, RSPO2, ZIC1, and ZNF610). Among Colombian subjects at high and low risk for gastric cancer, biopsies from subjects from the high-risk region had significantly higher levels of methylation at these 5 genes than samples from subjects in the low risk region (p ≤ 0.003). When results were stratified by Helicobacter pylori infection status, infection with a cagA positive, vacA s1m1 strain was significantly associated with highest methylation levels, compared with other strains (p = 0.024 to 0.001). More severe gastric inflammation and more advanced precancerous lesions were also associated with higher levels of DNA methylation (p ≤ 0.001). In a multivariate model, location of residence of the subject and the presence of cagA and vacA s1m1 in the H. pylori strain were independent variables associated with higher methylation in all 5 genes. High levels of mononuclear cell infiltration were significantly related to methylation in PCDH10, RSPO2, and ZIC1 genes. These results indicate that for these genes, levels of methylation in precancerous lesions are related to H. pylori virulence, geographic region and measures of chronic inflammation. These genes seem predisposed to sustain significant quantitative changes in DNA methylation at early stages of the gastric precancerous process.  相似文献   
29.

Background

It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk.

Results

After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P?<?0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P?<?0.05) or tended to be greater (P?<?0.15) in the niacin group than in the control group.

Conclusions

The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.
  相似文献   
30.
This work investigates how functionalization of aluminium surfaces with natural type III Anti-Freeze Protein (AFP) affects the mechanism of heterogeneous ice nucleation. First the bulk ice nucleation properties of distilled water and aqueous solution of AFP were evaluated by differential scanning calorimetry. Then the modified surface was characterized by Secondary Ions Mass Spectroscopy (SIMS), Fourier Transform InfraRed (FTIR) spectroscopy and contact angle measurement. Freezing experiments were then conducted in which water droplets underwent a slow controlled cooling. This study shows that compared to uncoated aluminium, the anti-freeze proteins functionalized surfaces exhibit a higher and narrower range of freezing temperature. It was found that these proteins that keep living organisms from freezing in cold environment act in the opposite way once immobilized on surfaces by promoting ice nucleation. Some suggestions regarding the mechanism of action of the observed phenomena were proposed based on the Classical Nucleation Theory (CNT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号