首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   918篇
  免费   80篇
  998篇
  2023年   6篇
  2022年   16篇
  2021年   30篇
  2020年   13篇
  2019年   23篇
  2018年   12篇
  2017年   15篇
  2016年   30篇
  2015年   45篇
  2014年   44篇
  2013年   51篇
  2012年   54篇
  2011年   54篇
  2010年   27篇
  2009年   29篇
  2008年   45篇
  2007年   36篇
  2006年   32篇
  2005年   22篇
  2004年   25篇
  2003年   35篇
  2002年   24篇
  2001年   17篇
  2000年   14篇
  1999年   25篇
  1998年   8篇
  1997年   8篇
  1996年   13篇
  1995年   11篇
  1994年   9篇
  1993年   6篇
  1992年   22篇
  1991年   15篇
  1990年   21篇
  1989年   18篇
  1988年   13篇
  1987年   14篇
  1986年   20篇
  1985年   24篇
  1984年   13篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1967年   3篇
排序方式: 共有998条查询结果,搜索用时 15 毫秒
51.
Misunderstanding of the dynamical behavior of the ventilatory system, especially under assisted ventilation, may explain the problems encountered in ventilatory support monitoring. Proportional assist ventilation (PAV) that theoretically gives a breath by breath assistance presents instability with high levels of assistance. We have constructed a mathematical model of interactions between three objects: the central respiratory pattern generator modelled by a modified Van der Pol oscillator, the mechanical respiratory system which is the passive part of the system and a controlled ventilator that follows its own law. The dynamical study of our model shows the existence of two crucial behaviors, i.e. oscillations and damping, depending on only two parameters, namely the time constant of the mechanical respiratory system and a cumulative interaction index. The same result is observed in simulations of spontaneous breathing as well as of PAV. In this last case, increasing assistance leads first to an increase of the tidal volume (VT), a further increase in assistance inducing a decrease in VT, ending in damping of the whole system to an attractive fixed point. We conclude that instabilities observed in PAV may be explained by the different possible dynamical behaviors of the system rather than changes in mechanical characteristics of the respiratory system.  相似文献   
52.
We studied copulation behaviour of the osprey, Pandion haliaetus, a semicolonial, fish-eating raptor, in Corsica (Mediterranean). Pairs copulated over a long period (45 days) and at a high rate, with, on average, 288 within-pair copulations (WPCs) for a clutch. Pairs breeding at higher density faced more frequent territorial intrusions than others and were potentially at an increased cuckoldry risk. However, and contrary to predictions of the ‘paternity assurance’ hypothesis for frequent copulations, we found that WPC rate decreased with increasing frequency of territorial intrusions. Male territory attendance increased with territorial intrusion frequency, to the detriment of the food provisioning of the female. Both attempted and successful WPC rates were positively related to the amount of food delivered by the male. Thus, the more frequent the territorial intrusions, the more time the male spent within his territory, the less he courtship fed and the smaller the fish he delivered, and the less the pair copulated successfully. WPC rate was also higher in newly formed pairs than in established pairs, and decreased with increasing pair bond length. The results suggest that males rely on mate guarding rather than frequent copulations to ensure paternity, and do not support the idea that sperm competition is the main cause of frequent WPCs. Nonfertilization functions of frequent copulations, such as pair bonding, mate assessment and mate retention, were likely early in the prelaying period. The findings that WPC rate decreased with mate fidelity and that females traded copulations for food suggest that mate retention was a possible function of frequent copulations in this species. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   
53.
Phosphorylation of protein kinase Cs (PKCs) by phosphoinositide-dependent kinase I (PDK) is critical for PKC activity. In the nervous system of the marine mollusk Aplysia, there are only two major PKC isoforms, the calcium-activated PKC Apl I and the calcium-independent PKC Apl II, and both PKCs are persistently activated during intermediate memory. We monitored the PDK-dependent phosphorylation of PKC Apl I and PKC Apl II using phosphopeptide antibodies. During persistent activation of PKCs in Aplysia neurons, there is a significant increase in the amount of PDK-phosphorylated PKC Apl II in the particulate fraction but no increase in the amount of PKC Apl I phosphorylated by PDK. PDK phosphorylation of PKCs was not sensitive to inhibitors of phosphatidylinositol 3-kinase, PKC, or expression of a kinase-inactive PDK. Localization of PDK-phosphorylated PKC Apl II using immunocytochemistry revealed an enrichment of phosphorylated PKC Apl II at the plasma membrane. These data suggest that increased PDK phosphorylation of PKC Apl II is important for persistent kinase activation.  相似文献   
54.
55.
The interaction between the leukocyte function-associated antigen-1 (LFA-1) and the intercellular adhesion molecule is thought to be mediated primarily via the inserted domain (I-domain) in the alpha-subunit. The activation of LFA-1 is an early step in triggering the adhesion of leukocytes to target cells decorated with intercellular adhesion molecules. There is some disagreement in the literature over the respective roles of conformational changes in the I-domain and of divalent cations (Mg(2+), Mn(2+)) in the activation of LFA-1 for intercellular adhesion molecule binding. X-ray crystallographic structures of the I-domains of LFA-1 and Mac-1 in the presence and absence of cations show structural differences in the C-terminal alpha-helix; this change was proposed to represent the active and inactive conformations of the I-domain. However, more recent X-ray results have called this proposal into question. The solution structure of the Mg(2+) complex of the I-domain of LFA-1 has been determined by NMR methods, using a model-based approach to nuclear Overhauser enhancement spectroscopy peak assignment. The protein adopts the same structure in solution as that of the published I-domain X-ray structures, but the C-terminal region, where the X-ray structures are most different from each other, is different again in the solution structures. The secondary structure of this helix is well formed, but NMR relaxation data indicate that there is considerable flexibility present, probably consisting of breathing or segmental motion of the helix. The conformational diversity seen in the various X-ray structures could be explained as a result of the inherent flexibility of this C-terminal region and as a result of crystal contacts. Our NMR data are consistent with a model where the C-terminal helix has the potential flexibility to take up alternative conformations, for example, in the presence and absence of the intercellular adhesion molecule ligand. The role of divalent cations appears from our results not to be as a direct mediator of a conformational change that alters affinity for the ligand. Rather, the presence of the cation appears to be involved in some other way in ligand binding, perhaps by acting as a bridge to the ligand and by modulation of the charge of the binding surface.  相似文献   
56.
During growth and development, the immature central nervous system undergoes rapid alterations in constituents and structure. We hypothesize that these alterations are accompanied by changes in the mechanical properties of brain tissue which, in turn, influence the response of the brain to traumatic inertial loads. Samples of frontal cerebrum from neonatal (2–3 days) and adult pigs were harvested and tested within 3 h post-mortem. The complex shear modulus of the samples was measured in a custom-designed oscillatory shear testing device at engineering shear strain amplitudes of 2.5% or 5% from 20–200 Hz, at 25°C and 100% humidity. In this range, the elastic and viscous components of the complex shear modulus increased significantly with the development of the cerebral region of the brain. Using an idealized model of the developing head, the age-dependent material properties of brain tissue were shown to affect the mechanical response of the brain to inertial loading. This study is a first step toward developing head injury tolerance criteria specifically for the pediatric population.  相似文献   
57.
BACKGROUND: The pleiotropic cytokine interleukin-6 mediates its multiple effects at the cell level through a multimeric receptor consisting of a binding protein (gp80) and a signal transducer (gp130). A soluble form of gp80 (sIL-6R or gp55) is found released from the surface of cells and appears to possess interleukin-6 (IL-6) agonist activity. Increases in circulating levels of sIL-6R have been reported in different pathological conditions but the precise role of this protein in vivo remains unknown. MATERIALS AND METHODS: The cDNA encoding the extracellular domain of the rat IL-6R (sIL-6R) with an appropriate leader sequence has been cloned into the E1 region of an adenovirus vector under the control of the hCMV promoter (Ad5.sIL-6R). RESULTS: Infection of different human or rodent cell lines with Ad5.sIL-6R leads to extended production of recombinant sIL-6R protein into the culture media. The kinetics of transgene expression depends both on the cell type and the species. sIL-6R produced in this manner is biologically active as it confers responsiveness of human hepatoma cells (HepG2) to rat IL-6 stimulation. Adenovirus vectors have been shown to be highly effective for transient delivery of cytokines in vivo. Antibodies against recombinant rat soluble IL-6R were generated and an ELISA developed that allowed us to quantify sIL-6R concentrations. The sIL-6R expressing adenovirus vector has been instilled intratracheally into rats and induced an increase in lung sIL-6R concentration from Day 1 up to Day 10. We demonstrate the potency of our system to deliver in vivo or in vitro soluble cytokine receptors in a prolonged but transient manner.  相似文献   
58.
ContextObesity is associated with insulin-resistance (IR), the key feature of type 2 diabetes. Although chronic low-grade inflammation has been identified as a central effector of IR development, it has never been investigated simultaneously at systemic level and locally in skeletal muscle and adipose tissue in obese humans characterized for their insulin sensitivity.ObjectivesWe compared metabolic parameters and inflammation at systemic and tissue levels in normal-weight and obese subjects with different insulin sensitivity to better understand the mechanisms involved in IR development.Methods30 post-menopausal women were classified as normal-weight insulin-sensitive (controls, CT) and obese (grade I) insulin-sensitive (OIS) or insulin-resistant (OIR) according to their body mass index and homeostasis model assessment of IR index. They underwent a hyperinsulinemic-euglycemic clamp, blood sampling, skeletal muscle and subcutaneous adipose tissue biopsies, an activity questionnaire and a self-administrated dietary recall. We analyzed insulin sensitivity, inflammation and IR-related parameters at the systemic level. In tissues, insulin response was assessed by P-Akt/Akt expression and inflammation by macrophage infiltration as well as cytokines and IκBα expression.ResultsSystemic levels of lipids, adipokines, inflammatory cytokines, and lipopolysaccharides were equivalent between OIS and OIR subjects. In subcutaneous adipose tissue, the number of anti-inflammatory macrophages was higher in OIR than in CT and OIS and was associated with higher IL-6 level. Insulin induced Akt phosphorylation to the same extent in CT, OIS and OIR. In skeletal muscle, we could not detect any inflammation even though IκBα expression was lower in OIR compared to CT. However, while P-Akt/Akt level increased following insulin stimulation in CT and OIS, it remained unchanged in OIR.ConclusionOur results show that systemic IR occurs without any change in systemic and tissues inflammation. We identified a muscle defect in insulin response as an early mechanism of IR development in grade I obese post-menopausal women.  相似文献   
59.
Analysis of the complete flagellin glycosylation locus of Campylobacter jejuni strain 81-176 revealed a less complex genomic organization than the corresponding region in the genome strain, C. jejuni NCTC 11168. Twenty-four of the 45 genes found between Cj1293 and Cj1337 in NCTC 11168 are missing in 81-176. Mutation of six new genes, in addition to three previously reported, resulted in a non-motile phenotype, consistent with a role in synthesis of pseudaminic acid (PseAc) or transfer of PseAc to flagellin. Mutation of Cj1316c or pseA had been shown to result in loss of the acetamidino form of pseudaminic acid (PseAm). Mutation of a second gene also resulted in loss of PseAm, as well as a minor modification that appears to be PseAm extended with N-acetyl-glutamic acid. Previously described mutants in C. jejuni 81-176 and Campylobacter coli VC167 that produced flagella lacking PseAm or PseAc failed to autoagglutinate. This suggests that interactions between modifications on adjacent flagella filaments are required for autoagglutination. Mutants (81-176) defective in autoagglutination showed a modest reduction in adherence and invasion of INT407 cells. However, there was a qualitative difference in binding patterns to INT407 cells using GFP-labelled 81-176 and mutants lacking PseAm. A mutant lacking PseAm was attenuated in the ferret diarrhoeal disease model.  相似文献   
60.
The synthesis of fragments corresponding to the N-terminal region of porcine big gastrin is described. Radioimmunoassay using synthetic peptides supports the revised structure for the hormone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号