首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   66篇
  2023年   4篇
  2022年   13篇
  2021年   28篇
  2020年   12篇
  2019年   22篇
  2018年   11篇
  2017年   13篇
  2016年   25篇
  2015年   39篇
  2014年   41篇
  2013年   46篇
  2012年   49篇
  2011年   48篇
  2010年   25篇
  2009年   26篇
  2008年   40篇
  2007年   33篇
  2006年   24篇
  2005年   20篇
  2004年   25篇
  2003年   32篇
  2002年   17篇
  2001年   16篇
  2000年   12篇
  1999年   15篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   11篇
  1994年   9篇
  1993年   4篇
  1992年   20篇
  1991年   14篇
  1990年   18篇
  1989年   17篇
  1988年   13篇
  1987年   13篇
  1986年   19篇
  1985年   23篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1974年   2篇
  1973年   3篇
  1970年   1篇
  1967年   3篇
排序方式: 共有878条查询结果,搜索用时 515 毫秒
31.
The biology of trees that grew in high‐latitude forests during warmer geological periods is of major interest in understanding past and future ecosystem dynamics. As we study the different plants that composed these forests, it becomes possible to make comparisons with ecosystem processes that occur today. Here we describe a silicified late Permian (Lopingian) glossopterid (seed fern) trunk from Skaar Ridge, central Transantarctic Mountains, Antarctica, with evidence of glossopterid rootlets growing into its wood. The specimen is interpreted as a nurse log similar to those seen in some extant forests. Together with evidence of glossopterid roots growing within the lacunae of older roots, this new specimen suggests the existence of facilitative interactions among the glossopterid trees that dominated the high‐latitude forests of Gondwana during the late Permian. More generally, the existence of self‐facilitation might have favoured the expansion of glossopterids within various environments, especially those at high palaeolatitudes, during the Permian icehouse to greenhouse transition.  相似文献   
32.
33.
34.
Damaged and misfolded proteins that are no longer functional in the cell need to be eliminated. Failure to do so might lead to their accumulation and aggregation, a hallmark of many neurodegenerative diseases. Protein quality control pathways play a major role in the degradation of these proteins, which is mediated mainly by the ubiquitin proteasome system. Despite significant focus on identifying ubiquitin ligases involved in these pathways, along with their substrates, a systems-level understanding of these pathways has been lacking. For instance, as misfolded proteins are rapidly ubiquitylated, unconjugated ubiquitin is rapidly depleted from the cell upon misfolding stress; yet it is unknown whether certain targets compete more efficiently to be ubiquitylated. Using a system-wide approach, we applied statistical and computational methods to identify characteristics enriched among proteins that are further ubiquitylated after heat shock. We discovered that distinct populations of structured and, surprisingly, intrinsically disordered proteins are prone to ubiquitylation. Proteomic analysis revealed that abundant and highly structured proteins constitute the bulk of proteins in the low-solubility fraction after heat shock, but only a portion is ubiquitylated. In contrast, ubiquitylated, intrinsically disordered proteins are enriched in the low-solubility fraction after heat shock. These proteins have a very low abundance in the cell, are rarely encoded by essential genes, and are enriched in binding motifs. In additional experiments, we confirmed that several of the identified intrinsically disordered proteins were ubiquitylated after heat shock and demonstrated for two of them that their disordered regions are important for ubiquitylation after heat shock. We propose that intrinsically disordered regions may be recognized by the protein quality control machinery and thereby facilitate the ubiquitylation of proteins after heat shock.Cells face the constant threat of protein misfolding and aggregation, and thus protein quality control pathways are important in selectively targeting damaged and misfolded proteins for degradation (1, 2). The ubiquitin proteasome system serves as a major mediator of this pathway by conjugating the small protein ubiquitin onto substrates through the E1-E2-E3 (ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin ligase, respectively) cascade for their recognition and degradation by the proteasome (3, 4). It is known that the activity of the ubiquitin-proteasome system is associated with many neurodegenerative diseases. For instance, ubiquitin is found enriched in protein inclusions associated with these diseases (5). Furthermore, proteasome activity has been shown to decrease with age in a large variety of organisms (6), leading to increased proteotoxicity in the cell.Because of the importance of maintaining protein homeostasis, numerous ubiquitin ligases in different cellular compartments function in protein quality control pathways to target misfolded or damaged proteins for degradation via the proteasome. For instance, the conserved Hrd1 ubiquitin ligase is involved in the endoplasmic-reticulum-associated degradation pathway that targets endoplasmic reticulum proteins for retro-translocation to the cytoplasm and proteasome degradation (7). A major question is what features are recognized by ubiquitin ligases that allow them to selectively target terminally misfolded proteins for degradation, given that the folding rates and physicochemical properties vary largely from protein to protein. Several E3 ubiquitin ligases involved in cytosolic protein quality control target their substrates via their interactions with chaperone proteins. For instance, the CHIP ubiquitin ligase can directly bind to Hsp70 and Hsp90 proteins (8), which may hand over client proteins that are not successfully folded. Understanding which features are recognized by these degradation quality-control pathways might help us understand how certain misfolded proteins evade this system, leading to their accumulation and aggregation in the cell.Many studies investigating degradation protein quality control have employed model substrates (e.g. mutated proteins that misfold) to reveal which components are involved in a given quality control machinery. However, these approaches do not typically reveal the whole spectrum of substrates for these pathways. Thus, alternative system-wide approaches are also needed to provide a bigger picture. Heat shock (HS)1 induces general misfolding at the proteome level by increasing thermal energy and was shown to cause an increase in ubiquitylation levels in the cell over 25 years ago (9, 10). However, the exact mechanism and pathways that target misfolded proteins have remained uncharacterized for a long time. We recently showed that the Hul5 ubiquitin ligase plays a major role in this heat stress response that mainly affects cytosolic proteins (11). Absence of Hul5 averts the ubiquitylation in the cytoplasm of several misfolded targets after HS, as well as low-solubility proteins in unstressed cells. Other E3 ubiquitin ligases are likely involved in this pathway (12). Interestingly, as ubiquitin constitutes about only 1% of the proteome, free unconjugated ubiquitin is rapidly depleted under stress conditions (13, 14). Given the limited amount of this protein, how does the cell triage ubiquitin among an excess of misfolded proteins? In order to gain systems-level insight, we sought to identify characteristics enriched among proteins ubiquitylated after HS using a combination of statistical and computational analysis, and we conducted additional proteomics and biochemical experiments to support our hypotheses. We discovered an unexpected susceptibility of intrinsically disordered proteins for ubiquitylation after misfolding stress.  相似文献   
35.
The striatum is predominantly composed of medium spiny neurons (MSNs) that send their axons along two parallel pathways known as the direct and indirect pathways. MSNs from the direct pathway express high levels of D1 dopamine receptors, while MSNs from the indirect pathway express high levels of D2 dopamine receptors. There has been much debate over the extent of colocalization of these two major dopamine receptors in MSNs of adult animals. In addition, the ontogeny of the segregation process has never been investigated. In this paper, we crossed bacterial artificial chromosome drd1a-tdTomato and drd2-GFP reporter transgenic mice to characterize these models and estimate D1-D2 co-expression in the developing striatum as well as in striatal primary cultures. We show that segregation is already extensive at E18 and that the degree of co-expression further decreases at P0 and P14. Finally, we also demonstrate that cultured MSNs maintain their very high degree of D1-D2 reporter protein segregation, thus validating them as a relevant in vitro model.  相似文献   
36.
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.  相似文献   
37.
In the classical view, NMDA receptors (NMDARs) are located postsynaptically and play a pivotal role in excitatory transmission and synaptic plasticity. In developing cerebellar molecular layer interneurons (MLIs) however, NMDARs are known to be solely extra‐ or presynaptic and somewhat poorly expressed. Somatodendritic NMDARs are exclusively activated by glutamate spillover from adjacent synapses, but the mode of activation of axonal NMDARs remains unclear. Our data suggest that a volume transmission is likely to stimulate presynaptic NMDARs (preNMDARs) since NMDA puffs directed to the axon led to inward currents and Ca2+ transients restricted to axonal varicosities. Using local glutamate photoliberation, we show that pre‐ and post‐synaptic NMDARs share the same voltage dependence indicating their containing NR2A/B subunits. Ca2+ transients elicited by NMDA puffs are eventually followed by delayed events reminding of the spontaneous Ca2+ transients (ScaTs) described at the basket cell/Purkinje cell terminals. Moreover, the presence of Ca2+ transients at varicosities located more than 5 μm away from the uncaging site indicates that the activation of preNMDARs sensitizes the Ca2+ stores in adjacent varicosities, a process that is abolished in the presence of a high concentration of ryanodine. Altogether, the data demonstrate that preNMDARs act as high‐gain glutamate detectors.  相似文献   
38.
Protein glycosylation is a common post-translational modification, the effect of which on protein conformational and stability is incompletely understood. Here we have investigated the effects of glycosylation on the thermostability of Bacillus subtilis xylanase A (XynA) expressed in Pichia pastoris. Intact mass analysis of the heterologous wild-type XynA revealed two, three, or four Hex8–16GlcNAc2 modifications involving asparagine residues at positions 20, 25, 141, and 181. Molecular dynamics (MD) simulations of the XynA modified with various combinations of branched Hex9GlcNAc2 at these positions indicated a significant contribution from protein-glycan interactions to the overall energy of the glycoproteins. The effect of glycan content and glycosylation position on protein stability was evaluated by combinatorial mutagenesis of all six potential N-glycosylation sites. The majority of glycosylated enzymes expressed in P. pastoris presented increased thermostability in comparison with their unglycosylated counterparts expressed in Escherichia coli. Steric effects of multiple glycosylation events were apparent, and glycosylation position rather than the number of glycosylation events determined increases in thermostability. The MD simulations also indicated that clustered glycan chains tended to favor less stabilizing glycan-glycan interactions, whereas more dispersed glycosylation patterns favored stabilizing protein-glycan interactions.  相似文献   
39.
Food intakes of rats having first access to either sucrose or fructose as the carbohydrate source in a three-way selection of macronutrients were compared. In the first period of choice between sugar, protein and fat similar day/night intakes were found in rats given sucrose or fructose. When rats had a first experience with either sucrose or fructose as the carbohydrate source, their total energy and macronutrient intakes decreased dramatically and diurnal rather than nocturnal feeding occurred when sugar was switched. These findings indicate that a previous adaptation to a sugar as a carbohydrate source in a three-way selection design has long-lasting effects on the subsequent pattern and amount of food intake on a similar choice among diets.  相似文献   
40.
Highlights? DGCR8 binds to CGG RNA repeats, cause of the neurodegenerative FXTAS disease ? DGCR8 and its partner, DROSHA, are sequestered within CGG RNA aggregates ? DGCR8 rescues the neuronal cell death induced by expanded CGG RNA repeats ? MicroRNA processing is impaired in patients with FXTAS  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号