首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   103篇
  国内免费   1篇
  2022年   16篇
  2021年   23篇
  2020年   9篇
  2019年   16篇
  2018年   19篇
  2017年   14篇
  2016年   29篇
  2015年   37篇
  2014年   51篇
  2013年   60篇
  2012年   72篇
  2011年   82篇
  2010年   39篇
  2009年   61篇
  2008年   52篇
  2007年   61篇
  2006年   46篇
  2005年   59篇
  2004年   42篇
  2003年   59篇
  2002年   42篇
  2001年   13篇
  2000年   17篇
  1999年   20篇
  1998年   11篇
  1997年   13篇
  1996年   9篇
  1995年   8篇
  1994年   10篇
  1993年   9篇
  1992年   15篇
  1991年   16篇
  1990年   5篇
  1989年   8篇
  1988年   11篇
  1987年   5篇
  1986年   15篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1982年   9篇
  1981年   5篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   9篇
  1974年   9篇
  1973年   5篇
  1964年   5篇
排序方式: 共有1186条查询结果,搜索用时 31 毫秒
51.
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.  相似文献   
52.
The purpose of this study was to investigate the frequency of production of the bacteriocin propionicin T1 and the protease-activated antimicrobial peptide (PAMP) and their corresponding genes in 64 isolates of classical propionibacteria. This study revealed that these genes are widespread in Propionibacterium jensenii and Propionibacterium thoenii but absent from the remaining species of classical propionibacteria that were studied. The pro-PAMP-encoding gene (pamA) was found in 63% of the P. jensenii strains and 61% of the P. thoenii strains, and all of these strains displayed PAMP activity. The propionicin T1-encoding gene (pctA) was present in 89% of the P. thoenii strains and 54% of the P. jensenii strains. All P. thoenii strains containing the pctA gene exhibited antimicrobial activity corresponding to propionicin T1 activity, whereas only 38% of the pctA-containing P. jensenii strains displayed this activity. Sequencing of the pctA genes revealed the existence of two allelic variants that differed in a single nucleotide in six strains of P. jensenii; in these strains the glycine at position 55 of propionicin T1 was replaced by an aspartate residue (A variant). No strains harboring the A variant showed any antimicrobial activity against propionicin T1-sensitive bacteria. An open reading frame (orf2) located immediately downstream from the pctA gene was absent in three strains containing the G variant of propionicin T1. Two of these strains showed low antimicrobial activity, while the third strain showed no antimicrobial activity at all. The protein encoded by orf2 showed strong homology to ABC transporters, and it has been proposed previously that this protein is involved in the producer immunity against propionicin T1. The limited antimicrobial activity exhibited by the strains lacking orf2 further suggests that this putative ABC transporter plays an important role in propionicin T1 activity.  相似文献   
53.
Interstitial fluid pressurization plays an important role in cartilage biomechanics and is believed to be a primary mechanism of load support in synovial joints. The objective of this study was to investigate the effects of enzymatic degradation on the interstitial fluid load support mechanism of articular cartilage in unconfined compression. Thirty-seven immature bovine cartilage plugs were tested in unconfined compression before and after enzymatic digestion. The peak fluid load support decreased significantly (p < 0.0001) from 84 +/- 10% to 53 +/- 19% and from 80 +/- 10% to 46 +/- 21% after 18-hours digestion with 1.0 u/mg-wet-weight and 0.7 u/mg-wet-weight of collagenase, respectively. Treatment with 0.1 u/ml of chondroitinase ABC for 24 hours also significantly reduced the peak fluid load support from 83 +/- 12% to 48 +/- 16% (p < 0.0001). The drop in interstitial fluid load support following enzymatic treatment is believed to result from a decrease in the ratio of tensile to compressive moduli of the solid matrix.  相似文献   
54.
BACKGROUND AND PURPOSE: Ghrelin is a peptide discovered in endocrine cells of the stomach. Since ghrelin mRNA expression and plasma levels are elevated in the fasting state, we investigated the effects of ghrelin on the interdigestive migrating myoelectric complex (MMC) in the small intestine in vivo and compared with motor effects of ghrelin in vitro. Methods: Sprague-Dawley rats were supplied with a venous catheter and bipolar electrodes in the duodenum and jejunum for electromyography of small intestine in awake rats. In organ baths, isometric contractions of segments of rat jejunum were studied. RESULTS: Ghrelin dose-dependently shortened the MMC cycle length at all three recording points. At the duodenal site, the interval shortened from 17.2+/-2.0 to 9.9+/-0.8 min during infusion of ghrelin (1000 pmol kg(-1) min(-1)) and at the jejunal site from 17.5+/-2.2 to 10.5+/-0.8 min. Ghrelin contracted the muscle strips with a pD2 of 7.97+/-0.47. Atropine (10(-6) M) in vitro and (1 mg kg(-1)) in vivo blocked the effect of ghrelin. CONCLUSION: Ghrelin stimulates interdigestive motility through cholinergic neurons. Ghrelin also stimulates motility, in vitro, suggesting that ghrelin receptors are present in the intestinal neuromuscular tissue and mediate its effects via cholinergic mechanisms.  相似文献   
55.
Plant-based expression systems are attractive for the large-scale production of pharmaceutical proteins. However, glycoproteins require particular attention as inherent differences in the N-glycosylation pathways of plants and mammals result in the production of glycoproteins bearing core-xylose and core-alpha(1,3)-fucose glyco-epitopes. For treatments requiring large quantities of repeatedly administered glycoproteins, the immunological properties of these non-mammalian glycans are a concern. Recombinant glycoproteins could be retained within the endoplasmic reticulum (ER) to prevent such glycan modifications occurring in the late Golgi compartment. Therefore, we analysed cPIPP, a mouse/human chimeric IgG1 antibody binding to the beta-subunit of human chorionic gonadotropin (hCG), fused to a C-terminal KDEL sequence, to investigate the efficiency of ER retrieval and the consequences in terms of N-glycosylation. The KDEL-tagged cPIPP antibody was expressed in transgenic tobacco plants or Agrobacterium-infiltrated tobacco and winter cherry leaves. N-Glycan analysis showed that the resulting plantibodies contained only high-mannose (Man)-type Man-6 to Man-9 oligosaccharides. In contrast, the cPIPP antibody lacking the KDEL sequence was found to carry complex N-glycans containing core-xylose and core-alpha(1,3)-fucose, thereby demonstrating the secretion competence of the antibody. Furthermore, fusion of KDEL to the diabody derivative of PIPP, which contains an N-glycosylation site within the heavy chain variable domain, also resulted in a molecule lacking complex glycans. The complete absence of xylose and fucose residues clearly shows that the KDEL-mediated ER retrieval of cPIPP or its diabody derivative is efficient in preventing the formation of non-mammalian complex oligosaccharides.  相似文献   
56.
Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor binding region and the C-terminal site is undefined. To understand the molecular details of the apoE-heparin interaction, we defined the microenvironments of all 12 lysine residues in intact apoE3 and examined their relative contributions to heparin binding. Nuclear magnetic resonance measurements showed that, in apoE3-dimyristoyl phosphatidylcholine discs, Lys-143 and -146 in the N-terminal domain and Lys-233 in the C-terminal domain have unusually low pK(a) values, indicating high positive electrostatic potential around these residues. Binding experiments using heparin-Sepharose gel demonstrated that the lipid-free 10-kDa fragment interacted strongly with heparin and a point mutation K233Q largely abolished the binding, indicating that Lys-233 is involved in heparin binding and that an unusually basic lysine microenvironment is critical for the interaction with heparin. With lipidated apoE3, it is confirmed that the Lys-233 site is completely masked and the N-terminal site mediates heparin binding. In addition, mutations of the two heparin binding sites in intact apoE3 demonstrated the dominant role of the N-terminal site in the heparin binding of apoE even in the lipid-free state. These results suggest that apoE interacts predominately with cell-surface heparan sulfate proteoglycans through the N-terminal binding site. However, Lys-233 may be involved in the binding of apoE to certain cell-surface sites, such as the protein core of biglycan.  相似文献   
57.
Carnitine palmitoyltransferase 1A (CPT1A) is the key regulatory enzyme of hepatic long-chain fatty acid beta-oxidation. Human CPT1A deficiency is characterized by recurrent attacks of hypoketotic hypoglycemia. We presently analyzed at both the functional and structural levels five missense mutations identified in three CPT1A-deficient patients, namely A275T, A414V, Y498C, G709E, and G710E. Heterologous expression in Saccharomyces cerevisiae permitted to validate them as disease-causing mutations. To gain further insights into their deleterious effects, we localized these mutated residues into a three-dimensional structure model of the human CPT1A created from the crystal structure of the mouse carnitine acetyltransferase. This study demonstrated for the first time that disease-causing CPT1A mutations can be divided into two categories depending on whether they affect directly (functional determinant) or indirectly the active site of the enzyme (structural determinant). Mutations A275T, A414V, and Y498C, which exhibit decreased catalytic efficiency, clearly belong to the second class. They are located more than 20 A away from the active site and mostly affect the stability of the protein itself and/or of the enzyme-substrate complex. By contrast, mutations G709E and G710E, which abolish CPT1A activity, belong to the first category. They affect Gly residues that are essential not only for the structure of the hydrophobic core in the catalytic site, but also for the chain-length specificity of CPT isoforms. This study provides novel insights into the functionality of CPT1A that may contribute to the design of drugs for the treatment of lipid disorders.  相似文献   
58.
Wiedmer T  Zhao J  Nanjundan M  Sims PJ 《Biochemistry》2003,42(5):1227-1233
Phospholipid scramblase 1 (PLSCR1) is a Ca(2+)-binding, endofacial plasma membrane protein thought to contribute to the transbilayer movement of phosphatidylserine and other membrane phospholipids that is observed upon influx of calcium into the cytosol. Expression of PLSCR1 is markedly induced by interferon and other cytokines, and PLSCR1-/- bone marrow cells exhibit defective myeloid proliferation and differentiation in response to stimulation by select growth factors, implying that PLSCR1 also functions in cytokine signaling or response pathways. PLSCR1 is multiply palmitoylated and partitions into membrane lipid raft domains. We have now identified the Cys-rich sequence (184)CCCPCC(189) in PLSCR1 as required for palmitoylation of the polypeptide. Mutation of these five cysteines abrogates PLSCR1 trafficking to the plasma membrane and results in virtually all of the expressed protein localizing to the nucleus. Consistent with this observation, cell treatment with the palmitoylation inhibitor, 2-bromo-palmitate, results in a marked redistribution of endogenous PLSCR1 from plasma membrane to nucleus. In a small percentage of untreated cells, predominantly nuclear localization of PLSCR1 is also observed. Furthermore, PLSCR1 is also found in the nucleus following its cytokine-induced expression. These data suggest that under the circumstance of rapid biosynthesis in response to gene induction by cytokines, PLSCR1 traffics into the nucleus, implying a potential nuclear function for this protein.  相似文献   
59.
Recombinant human phenylalanine hydroxylase (hPAH) expressed in Escherichia coli for 24 h at 28 degrees C has been found by two-dimensional electrophoresis to exist as a mixture of four to five molecular forms as a result of nonenzymatic deamidation of labile Asn residues. The multiple deamidations alter the functional properties of the enzyme including its affinity for l-phenylalanine and tetrahydrobiopterin, catalytic efficiency, and substrate inhibition and also result in enzyme forms more susceptible to limited tryptic proteolysis. Asn(32) in the regulatory domain deamidates very rapidly because of its nearest neighbor amino acid Gly(33) (Solstad, T., Carvalho, R. N., Andersen, O. A., Waidelich, D., and Flatmark, T. (2003) Eur. J. Biochem., in press). Matrix-assisted laser desorption/ionization time of flight-mass spectrometry of the tryptic peptides in the catalytic domain of a 24-h (28 degrees C) expressed enzyme has shown Asn(376) and Asn(133) to be labile residues. Site-directed mutagenesis of nine Asn residues revealed that the deamidations of Asn(32) and Asn(376) are the main determinants for the functional and regulatory differences observed between the 2- and 24-h-induced wild-type (wt) enzyme. The Asn(32) --> Asp, Asn(376) --> Asp, and the double mutant forms expressed for 2 h at 28 degrees C revealed qualitatively similar regulatory properties as the highly deamidated 24-h expressed wt-hPAH. Moreover, deamidation of Asn(32) in the wt-hPAH (24 h expression at 28 degrees C) and the Asn(32) --> Asp mutation both increase the initial rate of phosphorylation of Ser(16) by cAMP-dependent protein kinase (p < 0.005). By contrast, the substitution of Gly(33) with Ala or Val, both preventing the deamidation of Asn(32), resulted in enzyme forms that were phosphorylated at a similar rate as nondeamidated wt-hPAH, even on 24-h expression. The other Asn --> Asp substitutions (in the catalytic domain) revealed that Asn(207) and Asn(223) have an important stabilizing structural function. Finally, two recently reported phenylketonuria mutations at Asn residues in the catalytic domain were studied, i.e. Asn(167) --> Ile and Asn(207) --> Asp, and their phenotypes were characterized.  相似文献   
60.
 Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue. Received: 23 December 1999 / Accepted: 3 June 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号