首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2143篇
  免费   179篇
  2322篇
  2023年   8篇
  2022年   26篇
  2021年   38篇
  2020年   22篇
  2019年   29篇
  2018年   31篇
  2017年   32篇
  2016年   50篇
  2015年   87篇
  2014年   99篇
  2013年   109篇
  2012年   172篇
  2011年   160篇
  2010年   104篇
  2009年   85篇
  2008年   138篇
  2007年   138篇
  2006年   123篇
  2005年   128篇
  2004年   99篇
  2003年   100篇
  2002年   108篇
  2001年   31篇
  2000年   23篇
  1999年   29篇
  1998年   32篇
  1997年   27篇
  1996年   16篇
  1995年   27篇
  1994年   20篇
  1993年   19篇
  1992年   21篇
  1991年   14篇
  1990年   10篇
  1989年   17篇
  1988年   17篇
  1987年   9篇
  1986年   12篇
  1985年   7篇
  1984年   9篇
  1983年   11篇
  1982年   12篇
  1981年   9篇
  1980年   7篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1975年   9篇
  1974年   6篇
  1971年   4篇
排序方式: 共有2322条查询结果,搜索用时 15 毫秒
41.
The cultivation of perennial wild plant mixtures (WPMs) in biogas cropping systems dominated by maize (Zea mays L.) restores numerous ecosystem functions and improves both spatial and temporal agrobiodiversity. In addition, the colorful appearance of WPM can help enhance landscape beauty. However, their methane yield per hectare (MYH) varies greatly and amounts to only about 50% that of maize. This study aimed at decreasing MYH variability and increasing accumulated MYH of WPM by optimizing the establishment method. A field trial was established in southwest Germany in 2014, and is still running. It tested the effects of three WPM establishment procedures (E1: alone [without maize, in May], E2: undersown in cover crop maize [in May], E3: WPM sown after whole‐crop harvest of spring barley [Hordeum vulgare L.] in June) on both MYH and species diversity of two WPMs [S1, S2]). Mono‐cropped maize and cup plant (Silphium perfoliatum L.) were used as reference crops. Of the WPM treatments tested, S2E2 achieved the highest (19,296 , 60.5% of maize) and S1E1 the lowest accumulated MYH (8,156 , 25.6% of maize) in the years 2014–2018. Cup plant yielded slightly higher than S2E2 (19,968 , 62.6% of maize). In 2014, the WPM sown under maize did not significantly affect the cover crop performance. From 2015 onward, E1 and E2 had comparable average annual MYH and average annual number of WPM species. With a similar accumulated MYH but significantly higher number of species (3.5–10.2), WPM S2E2 outperformed cup plant. Overall, the long‐term MYH performance of WPM cultivation for biogas production can be significantly improved by undersowing with maize as cover crop. This improved establishment method could help facilitate the implementation of WPM cultivation for biogas production and thus reduce the trade‐off between bioenergy and biodiversity.  相似文献   
42.
43.
A high-throughput Arabidopsis reverse genetics system   总被引:16,自引:0,他引:16       下载免费PDF全文
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymmetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from approximately 100000 transformed lines. A total of 85108 TAIL-PCR products from 52964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org.  相似文献   
44.
45.
46.

Background  

Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species.  相似文献   
47.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   
48.
Exploring the development of nonviral nucleic acid delivery vectors with progressive, specific, and novel designs in molecular architecture is a fundamental way to investigate how aspects of chemical and physical structure impact the transfection process. In this study, macromolecules comprised of a four-arm star poly(ethylene glycol) and termini modified with one of five different heparin binding peptides have been investigated for their ability to bind, compact, and deliver DNA to mammalian cells in vitro. These new delivery vectors combine a PEG-derived stabilizing moiety with peptides that exhibit unique cell-surface binding ability in a molecular architecture that permits multivalent presentation of the cationic peptides. Five peptide sequences of varying heparin binding affinity were studied; each was found to sufficiently bind heparin for biological application. Additionally, the macromolecules were able to bind and compact DNA into particles of proper size for endocytosis. In biological studies, the PEG-star peptides displayed a range of toxicity and transfection efficiency dependent on the peptide identity. The vectors equipped with peptides of highest heparin binding affinity were found to bind DNA tightly, increase levels of cellular internalization, and display the most promising transfection qualities. Our results suggest heparin binding peptides with specific sequences hold more potential than nonspecific cationic polymers to optimize transfection efficiency while maintaining cell viability. Furthermore, the built-in multivalency of these macromolecules may allow simultaneous binding of both DNA at the core of the polyplex and heparan sulfate on the surface of the cell. This scheme may facilitate a bridging transport mechanism, tethering DNA to the surface of the cell and subsequently ushering therapeutic nucleic acids into the cell. This multivalent star shape is therefore a promising architectural feature that may be exploited in the design of future polycationic gene delivery vectors.  相似文献   
49.
Intron conservation, intron gain or loss and putative intron sliding events were determined for a set of three genes (SPO11, MRE11 and DMC1) involved in basic aspects of recombination in eukaryotes. These are ancient genes and present in nearly all of the major kingdoms. MRE11 is of bacterial origin and can be found in all kingdoms. DMC1 is a specialized homolog of the bacterial RecA protein, whereas the SPO11 gene is of archaebacterial origin. Only unique homologs of SPO11 are found in animals and fungi whereas three distantly related SPO11 copies are present in plant genomes. A comparison of the respective intron positions and phases of all genes was performed, demonstrating that a quarter of the intron positions were perfectly conserved over more than 1000000000 years. Regarding the remaining three quarters of the introns we found insertions to be about three times more frequent than deletions. Aligning the introns of the three different SPO11 homologs of Arabidopsis thaliana we propose a conclusive model of their evolution. We postulate that at least one duplication event occurred shortly after the divergence of plants from animals and fungi and that a respective homolog has been retained in a protist group, the apicomplexa.  相似文献   
50.
A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E, rBoNTE(H(c)) in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(H(c)) gene inserted into pHILD4 Escherichia coli-P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy number, and BoNTE(H(c)) sequence. Expression of rBoNTE(H(c)) from the Mut(+) HIS4 clone was confirmed in the shake-flask, prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(H(c)). Specific growth rate, ratio of growth to induction phase, and time of induction were critical for optimal rBoNTE(H(c)) production and minimal proteolytic degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(H(c)) per gram wet cell mass as determined by HPLC and Western blot analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号