首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1741篇
  免费   150篇
  1891篇
  2024年   2篇
  2023年   8篇
  2022年   24篇
  2021年   34篇
  2020年   20篇
  2019年   27篇
  2018年   28篇
  2017年   31篇
  2016年   37篇
  2015年   84篇
  2014年   86篇
  2013年   93篇
  2012年   157篇
  2011年   146篇
  2010年   100篇
  2009年   77篇
  2008年   120篇
  2007年   118篇
  2006年   94篇
  2005年   108篇
  2004年   80篇
  2003年   89篇
  2002年   84篇
  2001年   11篇
  2000年   4篇
  1999年   19篇
  1998年   24篇
  1997年   18篇
  1996年   7篇
  1995年   19篇
  1994年   13篇
  1993年   10篇
  1992年   15篇
  1991年   9篇
  1990年   6篇
  1989年   10篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   7篇
  1982年   11篇
  1981年   8篇
  1980年   4篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1971年   3篇
排序方式: 共有1891条查询结果,搜索用时 15 毫秒
71.
Proper patterns of genome-wide DNA methylation, mediated by DNA methyltransferases DNMT1, -3A and -3B, are essential for embryonic development and genomic stability in mammalian cells. The de novo DNA methyltransferase DNMT3B is of particular interest because it is frequently overexpressed in tumor cells and is mutated in immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. In order to gain a better understanding of DNMT3B, in terms of the targeting of its methylation activity and its role in genome stability, we biochemically purified endogenous DNMT3B from HeLa cells. DNMT3B co-purifies and interacts, both in vivo and in vitro, with several components of the condensin complex (hCAP-C, hCAP-E and hCAP-G) and KIF4A. Condensin mediates genome-wide chromosome condensation at the onset of mitosis and is critical for proper segregation of sister chromatids. KIF4A is proposed to be a motor protein carrying DNA as cargo. DNMT3B also interacts with histone deacetylase 1 (HDAC1), the co-repressor SIN3A and the ATP-dependent chromatin remodeling enzyme hSNF2H. Further more, DNMT3B co-localizes with condensin and KIF4A on condensed chromosomes throughout mitosis. These studies therefore reveal the first direct link between the machineries regulating DNA methylation and mitotic chromosome condensation in mammalian cells.  相似文献   
72.
73.
Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas). Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.  相似文献   
74.
To establish the mouse mutant, hairless (Hr), as a useful model for future analyses of target-ending interactions, we assessed the cutaneous innervation in the whisker pad after loss of primary hair targets. Postnatal (P) development of fur in Hr begins similarly to that of "normal" Swiss Webster (SW) mice. Around P10, hairs are shed and the follicles rendered permanently incompetent. Hair loss progresses rostrocaudally until the entire skin is denuded. Substantial alterations in the distribution and density of sensory and autonomic endings in the mystacial pad vibrissal and intervibrissal fur innervation were discovered. Pilo-neural complexes innervating fur hairs were dismantled in Hr. Epidermal innervation in SW was rich; only a few endings expressed growth-associated protein-43?kdal (GAP), suggesting limited changes in axonal elongation. Innervation in Hr formed a dense layer passing upward through the thickened epidermis, with substantial increases among all types of endings. Vibrissal follicle-sinus complexes were also hyperinnervated. Endings in Hr vibrissae and fur were strongly GAP-positive, suggesting reorganization of innervation. Dermal and vascular autonomic innervation in both strains co-localized tyrosine hydroxylase and neuropeptide Y, but only in Hr did neuropeptide Y co-localize calcitonin gene-related peptide (CGRP) and express GAP immunolabeling. Stereological quantitation of trigeminal ganglia revealed no differences in neuron number between Hr and SW, although there were small increases in cell volume in Hr trigeminal ganglion cells. These results suggested that a form of collateral sprouting was active in Hr mystacial pads, not in response to local injury, but as a result of loss of primary target tissues.  相似文献   
75.
Human erythrocyte glycophorin is one of the best characterized integral membrane proteins. Reconstitution of the membrane-spanning hydrophobic segment of glycophorin (the tryptic insoluble peptide released when glycophorin is treated with trypsin) with liposomes results in the production of freeze-fracture intrabilayer particles of 80 Å diameter (Segrest, J.P., Gulik-Krzywicki, T. and Sardet, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 3294–3298), with particles appearing at or above a tryptic insoluble peptide concentration of 4 mmol per mol phosphatidylcholine. In the present study, increasing concentrations of tryptic insoluble peptide were added to sonicated small unilamellar egg phosphatidylcholine vesicles and the rate of efflux of 22Na+ was examined by rapid (30 s) gel filtration on Sephadex G-50. Below a concentation of 3–5 mmol tryptic insoluble peptide/mol phosphatidylcholine, 22Na+ efflux occurs at a constant slow rate at given tryptic insoluble peptide concentrations. Above a concentration of 3–5 mM, the rate of efflux is biphasic at given tryptic insoluble peptide concentrations, exhibiting both an initial fast and a subsequent slow component. On the basis of graphic and computer curve-fitting analysis, with increasing tryptic insoluble peptide concentration, the rate of the slow component reaches a plateau at a tryptic insoluble peptide concentration of 3–5 mM and remains essentially constant until much higher concentrations are reached; the fast component increases linearly with increasing tryptic insoluble peptide concentration well beyond 5 mM. The most consistent interpretation of this data is as follows. The slow 22Na+ efflux component is due to perturbations of small unilamellar vesicle integrity by tryptic insoluble peptide monomers. At a tryptic insoluble peptide concentration of 3–5 mmol/mol, a critical concentration is reached following which there is intrabilayer tryptic insoluble peptide self-association. The fast 22Na+ efflux component is due to the increasing presence of tryptic insoluble peptide self-associated multimers the 80-Å particles seen by freeze-fracture electron microscopy) which results in a significantly larger bilayer defect than do tryptic insoluble peptide monomers. The failure of complete saturation of efflux by the fast component is ascribed to the presence of two populations of small unilamellar vesicles, some of which contain tryptic insoluble peptide multimers and some of which do not.Addition of cholesterol to the tryptic insoluble peptide/phosphatidylcholine vesicles decreases the rate of 22Na+ efflux by inhibiting primarily the fast component. Freeze-fracture electron microscopy indicates that the presence of cholesterol has no effect on the size, number or distribution of 80-Å intra-bilayer particles in the tryptic insoluble peptide/phosphatidylcholine vesicles. These results are consistent with a mechanism to explain the fast Na+ efflux component involving protein-lipid boundary perturbations.Efflux of 45Ca2+ from phosphatidylcholine vesicles is also enhanced by incorporation of tryptic insoluble peptide, but only if divalent cations (Ca2+ or Mg2+) are present in the external bathing media as well as inside the sonicated vesicles. If monovalent Na+ only is present in the bathing media no 45Ca2+ efflux is seen. Under conditions where 45Ca2+ efflux is seen, both a fast and a slow component are present, although both appear lower than corresponding rate constants for 22Na+ efflux. These results suggest a coordinated mechanism for ion efflux induced by tryptic insoluble peptide and, together with the 22Na+ efflux studies, may have mechanistic implications for the transbilayer phospholipid exchange (flip-flop) suggesed to be induced at glycophorin/phospholipid interfaces (de Kruiff, B., van Zoelen, E.J.J. and van Deenen, L.L.M. (1978) Biochim. Biophys. Acta 509, 537–542).  相似文献   
76.
Gibberella zeae, a homothallic ascomycetous fungus, does not seek a partner for mating. Here, we focused on the role(s) of putative pheromone and receptor genes during sexual development in G. zeae. Orthologs of two pheromone precursor genes (GzPPG1 and GzPPG2), and their cognate receptor genes (GzPRE2 and GzPRE1) were transcribed during sexual development. The expression of these genes was controlled by the mating-type (MAT) locus and a MAP kinase gene, but not in a MAT-specific manner. Targeted gene deletion and subsequent outcrosses generated G. zeae strains lacking these putative pheromone/receptor genes in various combinations (from single to quadruple deletions). All G. zeae deletion strains were similar to the self-fertile progenitor in both male- and female fertility and other traits. Sometimes, the deletions including ΔGzPPG1GzPRE2 caused increased numbers of immature perithecia. Taken together, it is clear that these putative pheromones/receptors play a non-essential role in the sexual development of G. zeae.  相似文献   
77.
B and T lymphocyte attenuator (BTLA) was initially identified as expressed on Th1 cells and B cells, but recently reported to be expressed by macrophages, dendritic cells, and NK cells as well. To address this discrepancy we generated a panel of BTLA-specific mAbs and characterized BTLA expression under various activation conditions. We report the existence of three distinct BTLA alleles among 23 murine strains, differing both in Ig domain structure and cellular distribution of expression on lymphoid subsets. The BALB/c and MRL/lpr alleles differ at one amino acid residue, but C57BL/6 has nine additional differences and alters the predicted cysteine bonding pattern. The BALB/c BTLA allele is also expressed by B cells, T cells, and dendritic cells, but not macrophages or NK cells. However, C57BL/6 BTLA is expressed on CD11b+ macrophages and NK cells. Finally, in CD4+ T cells, BTLA is expressed most highly following Ag-specific induction of anergy in vivo, and unlike programmed death-1 and CTLA-4, not expressed by CD25+ regulatory T cells. These results clarify discrepancies regarding BTLA expression, suggest that structural and expression polymorphisms be considered when analyzing BTLA in various murine backgrounds, and indicate a possible role in anergic CD4+ T cells.  相似文献   
78.
79.
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK), which is regulated by protein stability. However, its function is unknown and no physiological substrates for ERK3 have yet been identified. Here we demonstrate a specific interaction between ERK3 and MAPK-activated protein kinase-5 (MK5). Binding results in nuclear exclusion of both ERK3 and MK5 and is accompanied by ERK3-dependent phosphorylation and activation of MK5 in vitro and in vivo. Endogenous MK5 activity is significantly reduced by siRNA-mediated knockdown of ERK3 and also in fibroblasts derived from ERK3-/- mice. Furthermore, increased levels of ERK3 protein detected during nerve growth factor-induced differentiation of PC12 cells are accompanied by an increase in MK5 activity. Conversely, MK5 depletion causes a dramatic reduction in endogenous ERK3 levels. Our data identify the first physiological protein substrate for ERK3 and suggest a functional link between these kinases in which MK5 is a downstream target of ERK3, while MK5 acts as a chaperone for ERK3. Our findings provide valuable tools to further dissect the regulation and biological roles of both ERK3 and MK5.  相似文献   
80.
To better understand the roles of gammadelta T cells in mucosal infection, we utilized Salmonella enterica serovar Typhimurium (Salmonella serovar Typhimurium) infection in cattle as it closely approximates Salmonella serovar Typhimurium-induced enterocolitis in humans. Protein and gene expression in alphabeta and gammadelta T cells derived from lymphatic ducts draining the gut mucosa in Salmonella serovar Typhimurium-infected calves were analyzed. In calves with enterocolitis, general gene expression trends in gammadelta T cells suggested subtle activation and innate response, whereas alphabeta T cells were relatively quiescent following Salmonella serovar Typhimurium infection. An increase in IL-2R alpha expression on gammadelta T cells from infected calves and results from in vitro assays suggested that gammadelta T cells were primed by Salmonella serovar Typhimurium LPS to better respond to IL-2 and IL-15. Together with gene expression trends in vivo, these data support early priming activation of target tissue gammadelta T cells during Salmonella serovar Typhimurium infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号