首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   17篇
  198篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   12篇
  2012年   8篇
  2011年   13篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   6篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
51.
Human immunodeficiency virus type 1 (HIV-1) infection of individuals carrying the two alleles of the CCR5Delta32 mutation (CCR5(-/-)) has rarely been reported, but how the virus overcomes the CCR5Delta32 protective effect in these cases has not been delineated. We have investigated this in 6 infected (HIV(+)) and 25 HIV(-) CCR5(-/-) individuals. CD4(+) T lymphocytes isolated from HIV(-) CCR5(-/-) peripheral blood mononuclear cells (PBMCs) showed lower levels of CXCR4 expression that correlated with lower X4 Env-mediated fusion. Endogenous CCR5Delta32 protein was detected in all HIV(-) CCR5(-/-) PBMC samples (n = 25) but not in four of six unrelated HIV(+) CCR5(-/-) PBMC samples. Low levels were detected in another two HIV(+) CCR5(-/-) PBMC samples. The expression of adenovirus 5 (Ad5)-encoded CCR5Delta32 protein restored the protective effect in PBMCs from three HIV(+) CCR5(-/-) individuals but failed to restore the protective effect in PBMCs isolated from another three HIV(+) CCR5(-/-) individuals. In the latter samples, pulse-chase analyses demonstrated the disappearance of endogenous Ad5-encoded CCR5Delta32 protein and the accumulation of Ad5-encoded CCR5 during the chase periods. PBMCs isolated from CCR5(-/-) individuals showed resistance to primary X4 but were readily infected by a lab-adapted X4 strain. Low levels of Ad5-encoded CCR5Delta32 protein conferred resistance to primary X4 but not to lab-adapted X4 virus. These data provide strong support for the hypothesis that the CCR5Delta32 protein actively confers resistance to HIV-1 in vivo and suggest that the loss or reduction of CCR5Delta32 protein expression may account for HIV-1 infection of CCR5(-/-) individuals. The results also suggest that other cellular or virally induced factors may be involved in the stability of CCR5Delta32 protein.  相似文献   
52.
53.
54.
Specific 3H-sulpiride binding to rat striatal membranes shows an absolute requirement for the presence of sodium ions in the incubation buffer. Potassium, rubidium and caesium ions were unable to initiate specific 3H-sulpiride binding in a sodium free buffer, and lithium ionscould only partially replace sodium ions. Specific 3H-spiperone binding was unaffected by variation of the cation content of the incubation buffer. The alteration in 3H-sulpiride binding caused by sodium and lithium ions was due predominantly to an increase in the number of available binding sites, rather than to altered receptor affinity. Sodium ions may be essential for the accessability of 3H-sulpiride to a single site labelled also by 3H-spiperone. However, the Ki value for sulpiride displacement of 3H-spiperone in the presence of sodium ions was 20 times greater than the KD value for 3H-sulpiride binding. So, 3H-sulpiride may interact with a highly sodium dependent binding site distinct from that labelled by 3H-spiperone.  相似文献   
55.
The molecular mechanisms by which plants sense their micronutrient status, and adapt to their environment in order to ensure a sufficient micronutrient supply, are poorly understood. Zinc is an essential micronutrient for all living organisms. when facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation were recently identified. in this mini-review, we highlight recent progress in understanding the adaptation to zinc deficiency in plants and discuss the future challenges to fully unravel its molecular basis.Key words: adaptation, zinc deficiency, biofortification, molecular regulators, plant nutritionIn an increasingly populated world, agricultural production is an essential element of social development. Agriculture is the primary source of all nutrients required for human life, and nutrient sufficiency is the basis for good health and welfare of the human population.1 Soils with zinc deficiency are widespread in the world, affecting large areas of cultivated soils in India, Turkey, China, Brazil and Australia,2,3 making zinc the most common crop micronutrient deficiency.4 In addition, risk of inadequate zinc diet and zinc malnutrition are estimated to affect one-third of the global human population, i.e., around two billion people.5 Most affected are people living in developing countries, where diets are rich in cereal-based foods. Cereal grains are rich in phytate, which is a potent anti-nutrient, limiting micronutrient bioavailability.6 Zinc deficiency in crop production can be easily ameliorated through zinc fertilization, making agronomic biofortification an important strategy,3 however in the poorer regions, the required infrastructure to provide a reliable supply of zinc fertilizers of sufficient quality, is often not available. In those situations, biofortified crops, in which the zinc status of crops is genetically improved by selective breeding or via biotechnology, offer a rural-based intervention that will more likely reach the population.7 Different traits can be targeted to developing such improved crops, such as plant zinc deficiency tolerance, zinc use efficiency and the accumulation of zinc in edible parts. However, insufficient knowledge on the molecular mechanisms and the regulation of the zinc homeostasis network in plants is a serious bottleneck when pursuing zinc biofortification.  相似文献   
56.
Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent fhy3 alleles links enhanced inhibition of hypocotyl elongation in response to red light with an arrhythmic pattern of hypocotyl elongation. Both alleles also show disrupted rhythmicity of central-clock and clock-output gene expression in constant red light. fhy3 exhibits aberrant phase advances under red light pulses during the subjective day. Release-from-light experiments demonstrate clock disruption in fhy3 during the early part of the subjective day in constant red light, suggesting that FHY3 is important in gating red light signaling for clock resetting. The FHY3 gating function appears crucial in the early part of the day for the maintenance of rhythmicity under these conditions. However, unlike previously described Arabidopsis gating mutants that gate all light signaling, gating of direct red light-induced gene expression in fhy3 is unaffected. FHY3 appears to be a novel gating factor, specifically in gating red light signaling to the clock during daytime.  相似文献   
57.
Medical Physics Department (Medical School, University of Thessaly) participated in a Greek National EMF research program (EDBM34) with the scope to measure and evaluate radiofrequency (RF) exposure (27–3000 MHz) in areas of sensitive land use. A thousand (1000) measurements were carried out at two “metropolitan locations” (Athens and Thessaloniki: 624 points) and several rest urban/rural locations (376 points). SRM 3006 spectrum analyzer manufactured by Narda Safety Test Solutions was used. The broadband mean electric field in metropolitan areas was 0.41 V/m, while in the rest of Greece was 0.36 V/m. In metropolitan areas, the predominant RF source was the TV and Radio FM signals (36.2% mean contribution to the total RF exposure level). In the rest areas, the predominant source was the systems of the meteorological and military/defensive service (31.1%). The mobile sector contributed 14.9% in metropolitan areas versus 12.2% in the rest of Greece. The predominant mobile source was 900 MHz in both cases (4.5% in metropolitan areas vs. 3.3% in the rest of Greece). The total exposure from all RF sources complied with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 safety guidelines [ICNIRP, 2020]. The maximum exposure level was 0.129% of the limit for the metropolitan areas vs. 0.110% for the rest of Greece. Nonremarkable differences between metropolitan areas' exposure and the rest of Greece. In most cases, new 5 G antennas will be added to the existing base stations. Thus, the total exposure may be increased, leading to higher safety distances. © 2023 Bioelectromagnetics Society.  相似文献   
58.
Inbreeding depression is a major driver of mating system evolution and has critical implications for population viability. Theoretical and empirical attention has been paid to predicting how inbreeding depression varies with population size. Lower inbreeding depression is predicted in small populations at equilibrium, primarily due to higher inbreeding rates facilitating purging and/or fixation of deleterious alleles (drift load), but predictions at demographic and genetic disequilibrium are less clear. In this study, we experimentally evaluate how lifetime inbreeding depression and drift load, estimated by heterosis, vary with census (Nc) and effective (estimated as genetic diversity, He) population size across six populations of the biennial Sabatia angularis as well as present novel models of inbreeding depression and heterosis under varying demographic scenarios at disequilibrium (fragmentation, bottlenecks, disturbances). Our experimental study reveals high average inbreeding depression and heterosis across populations. Across our small sample, heterosis declined with He, as predicted, whereas inbreeding depression did not vary with He and actually decreased with Nc. Our theoretical results demonstrate that inbreeding depression and heterosis levels can vary widely across populations at disequilibrium despite similar He and highlight that joint demographic and genetic dynamics are key to predicting patterns of genetic load in nonequilibrium systems.  相似文献   
59.
Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm(-1)) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins.  相似文献   
60.
We addressed the role of innate immunity in the protection against HIV-1 infection by studying NK cell function in 37 Vietnamese intravascular drug users (IDUs), who appeared to remain HIV-1 uninfected despite many years of high-risk exposure (exposed uninfected, EU), 10 IDUs who underwent seroconversion and 28 unexposed blood donors. Main results were: NK cell lytic activities against both the NK-susceptible K562 cell line and the NK-resistant Daudi cell line were significantly augmented in EU IDUs compared with either controls or seroconverters before or after seroconversion; NK cells producing the cytokines IFN-gamma and TNF-alpha and the beta chemokines CCL3, CCL4, and CCL5 were also increased in the EU IDUs, either after in vitro activation or without stimulation. The finding of an enhanced NK cell function in EU IDUs, especially compared with IDUs who became HIV-1 infected, supports the hypothesis that NK cells contribute to the protection against HIV-1 infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号