全文获取类型
收费全文 | 2559篇 |
免费 | 262篇 |
国内免费 | 4篇 |
专业分类
2825篇 |
出版年
2021年 | 46篇 |
2020年 | 18篇 |
2019年 | 33篇 |
2018年 | 36篇 |
2017年 | 25篇 |
2016年 | 40篇 |
2015年 | 72篇 |
2014年 | 100篇 |
2013年 | 95篇 |
2012年 | 135篇 |
2011年 | 143篇 |
2010年 | 91篇 |
2009年 | 90篇 |
2008年 | 132篇 |
2007年 | 138篇 |
2006年 | 107篇 |
2005年 | 98篇 |
2004年 | 106篇 |
2003年 | 120篇 |
2002年 | 94篇 |
2001年 | 25篇 |
2000年 | 22篇 |
1999年 | 22篇 |
1998年 | 30篇 |
1997年 | 21篇 |
1996年 | 30篇 |
1995年 | 29篇 |
1993年 | 20篇 |
1991年 | 24篇 |
1990年 | 25篇 |
1989年 | 16篇 |
1988年 | 24篇 |
1987年 | 32篇 |
1986年 | 28篇 |
1985年 | 30篇 |
1984年 | 33篇 |
1983年 | 26篇 |
1982年 | 32篇 |
1981年 | 47篇 |
1980年 | 37篇 |
1979年 | 26篇 |
1978年 | 29篇 |
1977年 | 20篇 |
1976年 | 32篇 |
1974年 | 31篇 |
1973年 | 20篇 |
1972年 | 16篇 |
1969年 | 24篇 |
1968年 | 25篇 |
1967年 | 20篇 |
排序方式: 共有2825条查询结果,搜索用时 11 毫秒
71.
Wang X Mader MM Toth JE Yu X Jin N Campbell RM Smallwood JK Christe ME Chatterjee A Goodson T Vlahos CJ Matter WF Bloem LJ 《The Journal of biological chemistry》2005,280(19):19298-19305
Mixed lineage kinase 7 (MLK7) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the pro-apoptotic signaling pathways p38 and JNK. A library of potential kinase inhibitors was screened, and a series of dihydropyrrolopyrazole quinolines was identified as highly potent inhibitors of MLK7 in vitro catalytic activity. Of this series, an aryl-substituted dihydropyrrolopyrazole quinoline (DHP-2) demonstrated an IC50 of 70 nM for inhibition of pJNK formation in COS-7 cell MLK7/JNK co-transfection assays. In stimulated cells, DHP-2 at 200 nM or MLK7 small interfering RNA completely blocked anisomycin and UV induced but had no effect on interleukin-1beta or tumor necrosis factor-alpha-induced p38 and JNK activation. Additionally, the compound blocked anisomycin and UV-induced apoptosis in COS-7 cells. Heart tissue homogenates from MLK7 transgenic mice treated with DHP-2 at 30 mg/kg had reduced JNK and p38 activation with no apparent effect on ERK activation, demonstrating that this compound can be used to block MLK7-driven MAPK pathway activation in vivo. Taken together, these data demonstrate that MLK7 is the MAPKKK required for modulation of the stress-activated MAPKs downstream of anisomycin and UV stimulation and that DHP-2 can be used to block MLK7 pathway activation in cells as well as in vivo. 相似文献
72.
Mepe is expressed during skeletal development and regeneration 总被引:4,自引:1,他引:4
Matrix extracellular phosphoglycoprotein (Mepe) is a bone metabolism regulator that is expressed by osteocytes in normal adult bone. Here, we used an immunohistochemical approach to study whether Mepe has a role in murine long bone development and regeneration. Our data showed that Mepe protein was produced by osteoblasts and osteocytes during skeletogenesis, as early as 2 days postnatal. During the healing of non-stabilized tibial fractures, which occurs through endochondral ossification, Mepe expression was first detected in fibroblast-like cells within the callus by 6 days postfracture. By 10 and 14 days postfracture (the hard callus phase of repair), Mepe was expressed within late hypertrophic chondrocytes and osteocytes in the regenerating tissues. Mepe became externalized in osteocyte lacunae during this period. By 28 days postfracture (the remodeling phase of repair), Mepe continued to be robustly expressed in osteocytes of the regenerating bone. We compared the Mepe expression profile with that of alkaline phosphatase, a marker of bone mineralization. We found that both Mepe and alkaline phosphatase increased during the hard callus phase of repair. In the remodeling phase of repair, Mepe expression levels remained high while alkaline phosphatase activity decreased. We also examined Mepe expression during cortical bone defect healing, which occurs through intramembranous ossification. Mepe immunostaining was found within fibroblast-like cells, osteoblasts, and osteocytes in the regenerating bone, through 5 to 21 days postsurgery. Thus, Mepe appears to play a role in both long bone regeneration and the latter stages of skeletogenesis. 相似文献
73.
Colorectal cancer is the third leading cause of cancer-related death in the western world. In vitro and in vivo experiments showed that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can attenuate the proliferation of cancer cells, including colon cancer, and increase the efficacy of various anticancer drugs. However, these studies address the effects of n-3 PUFAs on the bulk of the tumor cells and not on the undifferentiated colon cancer stem-like cells (CSLCs) that are responsible for tumor formation and maintenance. CSLCs have also been linked to the acquisition of chemotherapy resistance and to tumor relapse. Colon CSLCs have been immunophenotyped using several antibodies against cellular markers including CD133, CD44, EpCAM, and ALDH. Anti-CD133 has been used to isolate a population of colon cancer cells that retains stem cells properties (CSLCs) from both established cell lines and primary cell cultures. We demonstrated that the n-3 PUFA, eicosapentaenoic acid (EPA), was actively incorporated into the membrane lipids of COLO 320 DM cells. 25 uM EPA decreased the cell number of the overall population of cancer cells, but not of the CD133 (+) CSLCs. Also, we observed that EPA induced down-regulation of CD133 expression and up-regulation of colonic epithelium differentiation markers, Cytokeratin 20 (CK20) and Mucin 2 (MUC2). Finally, we demonstrated that EPA increased the sensitivity of COLO 320 DM cells (total population) to both standard-of-care chemotherapies (5-Fluorouracil and oxaliplatin), whereas EPA increased the sensitivity of the CD133 (+) CSLCs to only 5-Fluorouracil. 相似文献
74.
Brett D. Welch Ping Yuan Sayantan Bose Christopher A. Kors Robert A. Lamb Theodore S. Jardetzky 《PLoS pathogens》2013,9(8)
Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G) and the fusion protein (F). HN binds sialic acid on host cells (hemagglutinin activity) and hydrolyzes these receptors during viral egress (neuraminidase activity, NA). Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain). Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV) HN ectodomain revealed the heads (NA domains) in a “4-heads-down” conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides). Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5) HN ectodomain in a “2-heads-up/2-heads-down” conformation where two heads (covalent dimers) are in the “down position,” forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an “up position.” The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F. 相似文献
75.
Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B 总被引:1,自引:0,他引:1
Liu CJ Dib-Hajj SD Renganathan M Cummins TR Waxman SG 《The Journal of biological chemistry》2003,278(2):1029-1036
We have previously shown that fibroblast growth factor homologous factor 1B (FHF1B), a cytosolic member of the fibroblast growth factor family, associates with the sensory neuron-specific channel Na(v)1.9 but not with the other sodium channels present in adult rat dorsal root ganglia neurons. We show in this study that FHF1B binds to the C terminus of the cardiac voltage-gated sodium channel Na(v)1.5 and modulates the properties of the channel. The N-terminal 41 amino acid residues of FHF1B are essential for binding to Na(v)1.5, and the conserved acidic rich domain (amino acids 1773-1832) in the C terminus of Na(v)1.5 is sufficient for association with this factor. Binding of the growth factor to recombinant wild type human Na(v)1.5 in human embryonic kidney 293 cells produces a significant hyperpolarizing shift in the voltage dependence of channel inactivation. An aspartic acid to glycine substitution at position 1790 of the channel, which underlies one of the LQT-3 phenotypes of cardiac arrythmias, abolishes the interaction of the Na(v)1.5 channel with FHF1B. This is the first report showing that interaction with a growth factor can modulate properties of a voltage-gated sodium channel. 相似文献
76.
77.
Chung CP Oeser A Avalos I Gebretsadik T Shintani A Raggi P Sokka T Pincus T Stein CM 《Arthritis research & therapy》2006,8(6):R186-7
The prevalence of ischemic heart disease and atherosclerosis is increased in patients with rheumatoid arthritis (RA). In the general population, but not in patients with systemic lupus erythematosus, the Framingham risk score identifies patients at increased cardiovascular risk and helps determine the need for preventive interventions. We examined the hypothesis that the Framingham score is increased and associated with coronary-artery atherosclerosis in patients with RA. The Framingham score and the 10-year cardiovascular risk were compared among 155 patients with RA (89 with early disease, 66 with long-standing disease) and 85 control subjects. The presence of coronary-artery calcification was determined by electron-beam computed tomography. The Framingham score was compared in patients with RA and control subjects, and the association between the risk score and coronary-artery calcification was examined in patients. Patients with long-standing RA had a higher Framingham score (14 [11 to 18]) (median [interquartile range]) compared to patients with early RA (11 [8 to 14]) or control subjects (12 [7 to 14], P < 0.001). This remained significant after adjustment for age and gender (P = 0.015). Seventy-six patients with RA had coronary calcification; their Framingham risk score was higher (14 [12 to 17]) than that of 79 patients without calcification (10 [5 to 14]) (P < 0.001). Furthermore, a higher Framingham score was associated with a higher calcium score (odds ratio [OR] = 1.20, 95% confidence interval [CI] 1.12 to 1.29, P < 0.001), and the association remained significant after adjustment for age and gender (OR = 1.15, 95% CI 1.02 to 1.29, P = 0.03). In conclusion, a higher Framingham risk score is independently associated with the presence of coronary calcification in patients with RA. 相似文献
78.
Elias EV Quiroga R Gottig N Nakanishi H Nash TE Neiman A Lujan HD 《The Journal of biological chemistry》2008,283(51):35996-36010
Giardia is a eukaryotic protozoal parasite with unusual characteristics, such as the absence of a morphologically evident Golgi apparatus. Although both constitutive and regulated pathways for protein secretion are evident in Giardia, little is known about the mechanisms involved in vesicular docking and fusion. In higher eukaryotes, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) of the vesicle-associated membrane protein and syntaxin families play essential roles in these processes. In this work we identified and characterized genes for 17 SNAREs in Giardia to define the minimal set of subcellular organelles present during growth and encystation, in particular the presence or not of a Golgi apparatus. Expression and localization of all Giardia SNAREs demonstrate their presence in distinct subcellular compartments, which may represent the extent of the endomembrane system in eukaryotes. Remarkably, Giardia SNAREs, homologous to Golgi SNAREs from other organisms, do not allow the detection of a typical Golgi apparatus in either proliferating or differentiating trophozoites. However, some features of the Golgi, such as the packaging and sorting function, seem to be performed by the endoplasmic reticulum and/or the nuclear envelope. Moreover, depletion of individual genes demonstrated that several SNAREs are essential for viability, whereas others are dispensable. Thus, Giardia requires a smaller number of SNAREs compared with other eukaryotes to accomplish all of the vesicle trafficking events that are critical for the growth and differentiation of this important human pathogen. 相似文献
79.
Benjamin H. Singer Michael W. Newstead Xianying Zeng Christopher L. Cooke Robert C. Thompson Kanakadurga Singer Ramya Ghantasala Jack M. Parent Geoffrey G. Murphy Theodore J. Iwashyna Theodore J. Standiford 《PloS one》2016,11(2)
Survivors of sepsis often experience long-term cognitive and functional decline. Previous studies utilizing lipopolysaccharide injection and cecal ligation and puncture in rodent models of sepsis have demonstrated changes in depressive-like behavior and learning and memory after sepsis, as well as evidence of myeloid inflammation and cytokine expression in the brain, but the long-term course of neuroinflammation after sepsis remains unclear. Here, we utilize cecal ligation and puncture with greater than 80% survival as a model of sepsis. We found that sepsis survivor mice demonstrate deficits in extinction of conditioned fear, but no acquisition of fear conditioning, nearly two months after sepsis. These cognitive changes occur in the absence of neuronal loss or changes in synaptic density in the hippocampus. Sepsis also resulted in infiltration of monocytes and neutrophils into the CNS at least two weeks after sepsis in a CCR2 independent manner. Cellular inflammation is accompanied by long-term expression of pro-inflammatory cytokine and chemokine genes, including TNFα and CCR2 ligands, in whole brain homogenates. Gene expression analysis of microglia revealed that while microglia do express anti-microbial genes and damage-associated molecular pattern molecules of the S100A family of genes at least 2 weeks after sepsis, they do not express the cytokines observed in whole brain homogenates. Our results indicate that in a naturalistic model of infection, sepsis results in long-term neuroinflammation, and that this sustained inflammation is likely due to interactions among multiple cell types, including resident microglia and peripherally derived myeloid cells. 相似文献
80.
Hunjoong Lee Theodore Diavatis Sanka Tennakoon Peilin Yu Xiaolian Gao 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》2007,1769(1):20-28
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2′-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2′-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first β sheet and second β sheet of RNase HI of Escherichia coli might participate in substrate binding. 相似文献