首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   15篇
  2011年   6篇
  2009年   4篇
  2008年   9篇
  2007年   3篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1986年   2篇
  1985年   4篇
  1912年   1篇
  1911年   2篇
排序方式: 共有133条查询结果,搜索用时 20 毫秒
51.
Proteoglycans (PGs) are implicated in the growth and progression of malignant tumors. In this study, we examined the concentration and localization of PGs in advanced (stage IV) laryngeal squamous cell carcinoma (LSCC) and compared with human normal larynx (HNL). LSCC and HNL sections were examined immunohistochemically with a panel of antibodies, and tissues extracts were analyzed by biochemical methods including immunoblotting and high performance liquid chromatography (HPLC). The results demonstrated significant destruction of cartilage in LSCC, which was followed by marked decrease of aggrecan and link protein. In contrast to the loss of aggrecan in LSCC, accumulation of versican and decorin was observed in the tumor-associated stroma. Biochemical analyses indicated that aggrecan, versican, decorin and biglycan comprise the vast majority of total PGs in both healthy and cancerous tissue. In LSCC the absolute amounts of KS/CS/DS-containing PGs were dramatically decreased about 18-fold in comparison to HNL. This decrease is due to the loss of aggrecan. Disaccharide analysis of CS/DSPGs from LSCC showed a significant reduction of 6-sulfated Delta-disaccharides (Deltadi-6S) with a parallel increase of 4-sulfated Delta-disaccharides (Deltadi-4S) as compared to HNL. The obtained data clearly demonstrate that tumor progression is closely related to specific alteration of matrix PGs in LSCC. The altered composition of PGs in cartilage, as well as in tumor-associated stroma, is crucial for the biological behaviour of cancer cells in the diseased tissue.  相似文献   
52.
53.
Winter wheat was grown at ambient and elevated (ambient plus 350 μL L–1) CO2 concentrations in open top chambers and in field-tracking sun-lit climatized enclosures (elevated is 718 μL L–1). There was no significant effect of CO2 concentration on sheath, leaf and root biomass and leaf area in the early spring (January to April). 24-h canopy CO2 exchange rate (CCER) was not significantly affected either. However, elevated CO2 concentration increased CCER at midday, decreased evapotranspiration rate and increased instantaneous water-use-efficiency during early spring. Leaf, sheath and root nitrogen concentration per unit dry weight decreased and nonstructural carbohydrate concentration increased under elevated CO2, and N-uptake per unit ground area decreased significantly (– 22%) towards the end of this period. These results contrast with results from the final harvest, when grain yield and biomass were increased by 19% under elevated CO2. N concentration per dry weight was reduced by 5%, but N-uptake per unit ground area was significantly higher (+ 11%) for the elevated CO2 treatment. 24-h and midday-CCER increased significantly more in late spring (period of 21 April to 30 May) (respectively by + 40% and 53%) than in the early spring (respectively 5% and 19%) in response to elevated CO2. Midday evapotranspiration rate was reduced less by elevated CO2 in the late spring (– 13%) than in early spring (– 21%). The CO2 response of midday and 24-h CCER decreased again (+ 27% and + 23% resp.) towards the end of the growing season. We conclude that the low response to CO2 concentration during the early spring was associated with a growth-restriction, caused by low temperature and irradiance levels. The reduction of nitrogen concentration, the increase of nonstructural carbohydrate, and the lower evapotranspiration indicated that CO2 did have an effect towards the end of early spring, but not on biomass accumulation. Regression analysis showed that both irradiance and temperature affected the response to CO2.  相似文献   
54.
Protoplasts isolated from root cap cells of maize were shown to secrete fucose-rich polysaccharides and were used in a patch-clamp study to monitor changes in whole-cell capacitance. Ca2+ was required for exocytosis, which was measured as an increase in cell capacitance during intracellular dialysis with Ca2+ buffers via the patch pipette. Exocytosis was stimulated significantly by small increases above normal resting [Ca2+]. In the absence of Ca2+, protoplasts decreased in size. In situ hybridization showed significant expression of the maize annexin p35 in root cap cells, differ-entiating vascular tissue, and elongating cells. Dialysis of protoplasts with maize annexins stimulated exocytosis at physiological [Ca2+], and this could be blocked by dialysis with antibodies specific to maize annexins. Dialysis with milli-molar concentrations of GTP strongly inhibited exocytosis, causing protoplasts to decrease in size. GTPgammaS and GDPbetaS both caused only a slight inhibition of exocytosis at physiological Ca2+. Protoplasts were shown to internalize plasma membrane actively. The results are discussed in relation to the regulation of exocytosis in what is usually considered to be a constitutively secreting system; they provide direct evidence for a role of annexins in exocytosis in plant cells.  相似文献   
55.
The effect of elevated [CO2] on the productivity of spring wheat, winter wheat and faba bean was studied in experiments in climatized crop enclosures in the Wageningen Rhizolab in 1991–93. Simulation models for crop growth were used to explore possible causes for the observed differences in the CO2 response. Measurements of the canopy gas exchange (CO2 and water vapour) were made continuously from emergence until harvest. At an external [CO2] of 700 μmol mol?1 Maximum Canopy CO2 Exchange Rate (CCERmax) at canopy closure was stimulated by 51% for spring wheat and by 71% for faba bean. At the end of the growing season, above ground biomass increase at 700 μmol mol?1 was 58% (faba bean), 35% (spring wheat) and 19% (winter wheat) and the harvest index did not change. For model exploration, weather data sets for the period 1975-88 and 1991–93 were used, assuming adequate water supply and [CO2] at 350 and 700 μmol mol?1. For spring wheat the simulated responses (35–50%) were at the upper end of the experimental results. In agreement with experiments, simulations showed smaller responses for winter wheat and larger responses for faba bean. Further model explorations showed that this differential effect in the CO2 response may not be primarily due to fundamental physiological differences between the crops, but may be at least partly due to differences in the daily air temperatures during comparable stages of growth of these crops. Simulations also showed that variations between years in CO2 response can be largely explained by differences in weather conditions (especially temperature) between growing seasons.  相似文献   
56.
Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum) and after completed exercise (exercise serum). The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.  相似文献   
57.
Synthetic azaspiracid-1 (AZA-1, 1), 6-, 10-, 13-, 14-, 16-, 17-, 19-, 20-epi-azaspiracid-1 (C1–C20-epi-AZA-1, 2), and twelve truncated azaspiracid-1 analogs (314) were synthesized and tested for their toxicity effects in mice. Of these compounds only AZA-1 (1) and its diastereomer C1–C20-epi-AZA-1 (2) exhibited significant toxicity in mice with the latter compound (2) being one-fourth as toxic as the former (1). The lack of toxicity exhibited by the severely truncated analogs (314) implies that the entire or at least a major part of the structure of AZA-1 (1) is required for biological activity.  相似文献   
58.
It has been documented that increased intake of polyphenols may provide protection against coronary heart disease and stroke. Blueberries (Vaccinium angustifolium) are one of the richest sources of antioxidants among fruits and vegetables. Phenolic compounds from berry extracts inhibit human low density lipoprotein and liposome oxidation. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are structural components of aortas with great structural diversity. Their interaction with compounds such as enzymes, cytokines, growth factors, proteins and lipoproteins and their subsequent role in degenerative diseases has been documented. We investigated the effects of a diet rich in blueberries on the content and structure of GAGs. Sprague-Dawley rats were fed either a control (C) or a blueberry (B) diet for 13 weeks. Aortic tissue GAGs were isolated with papain digestion, alkaline borohydride treatment and anion-exchange chromatography. Cellulose acetate electrophoresis and treatment of the fractions with specific lyases revealed the presence of three GAG populations, i.e. hyaluronan (HA), heparan sulfate (HS) and galactosaminoglycans (GalAGs). Disaccharide composition was determined by high-performance capillary electrophoresis following enzymatic degradation. A 13% higher amount of total GAGs in aortas of B-fed rats was attributed to a higher content of GalAGs (67%). Determination of the sulfated disaccharides showed an overall lower concentration of oversulfated disaccharides in both HS and GalAG populations in the aortas of the B group. Our results demonstrate for the first time that a diet rich in blueberries results in structural alterations in rat aortic tissue GAGs. These changes may affect cellular signal transduction pathways and could have major consequences for the biological function of GAG molecules within the vascular environment.  相似文献   
59.
We examined the effect of dietary Mn on the composition and structure of heparan sulfate (HS) glycosaminoglycans (GAGs) of rat aorta. Animals were randomly assigned to either a Mn deficient (MnD), adequate (MnA) or supplemented (MnS) diet (Mn<1, 10–15 and 45–50 ppm, respectively). After 15 weeks, aortic tissue GAGs were isolated with papain digestion, alkaline borohydride treatment and anion-exchange chromatography. Cellulose acetate electrophoresis and treatment of the fractions with specific lyases revealed the presence of three GAG populations, i.e. hyaluronan (HA), heparan sulfate (HS) and galactosaminoglycans (GalAGs). Disaccharide composition of the HS fractions was determined by HPCE following treatment with heparin lyases I, II and III. In MnS aortas we observed increased concentration of total GalAGs and decreased concentration of HS and HA, when compared to MnA aortas. Aortas from MnD and MnA rats appeared to have similar distribution of individual GAGs. Heparan sulfate chains of MnS aortas contained higher (41%) concentration of non-sulfated units compared to MnA ones. Variable amounts of trisulfated and disulfated units were found only in MnD and MnA groups but not in MnS. Our results demonstrate that HS biosynthesis in the rat aorta undergoes marked structural modifications that depend upon dietary Mn intake. The reduced expression and undersulfation of HSPGs with Mn supplementation might indicate a reduced ability of vascular cells to interact with biologically active molecules such as growth factors. Alterations in cell-membrane binding ability to a variety of extracellular ligands might affect signal-transduction pathways and arterial functional properties.  相似文献   
60.
Exosomes constitute the newest mode of intercellular communication, transmitting information between cells. This exchange of molecular information is facilitated by their unique composition which is enriched with enzymes, structural proteins, adhesion molecules, lipid rafts and RNAs. Following the discovery that cancer cells secrete excessive amounts of exosomes compared to normal cells, it became evident that i) these vesicles can be used as diagnostic markers; ii) their active secretion has functional implications, albeit unknown whether they are tumor promoting or suppressing. Notably, the interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma may promote the transfer of oncogenes (e.g. β-catenin, CEA, HER2, Melan-A/Mart-1 and LMP-1) and onco-microRNAs (e.g. let7, miR1, miR15, miR16 and miR375) from one cell to another, leading to the reprogramming of the recipient cells. The molecular composition and functional role of tumor cell-derived exosomes in tumorigenesis, metastasis and response to therapy are slowly decrypted and the latest findings as well as potential therapeutic strategies are discussed in this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号