首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   23篇
  340篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   17篇
  2013年   27篇
  2012年   26篇
  2011年   39篇
  2010年   7篇
  2009年   11篇
  2008年   16篇
  2007年   14篇
  2006年   19篇
  2005年   5篇
  2004年   14篇
  2003年   13篇
  2002年   16篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1976年   2篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
  1961年   1篇
  1957年   1篇
  1951年   1篇
  1949年   1篇
  1936年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
91.
The outer membrane lipoprotein A (OmlA) belongs to a family of bacterial small lipoproteins widely distributed across the beta and gamma proteobacteria. Although the role of numerous bacterial lipoproteins is known, the biological function of OmlA remains elusive. We found that in the citrus canker pathogen, Xanthomonas axonopodis pv. citri (X. citri), OmlA is coregulated with the ferric uptake regulator (Fur) and their expression is enhanced when X. citri is grown on citrus leaves, suggesting that these proteins are involved in plant-pathogen interaction. To gain insights into the function of OmlA, its conformational and dynamic features were determined by nuclear magnetic resonance. The protein has highly flexible N- and C- termini and a structurally well defined core composed of three beta-strands and two small alpha-helices, which pack against each other forming a two-layer alpha/beta scaffold. This protein fold resembles the domains of the beta-lactamase inhibitory protein BLIP, involved in protein-protein binding. In conclusion, the structure of OmlA does suggest that this protein may be implicated in protein-protein interactions required during X. citri infection.  相似文献   
92.
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.  相似文献   
93.

Background

Genome-wide association studies of two main forms of inflammatory bowel diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC), have identified 99 susceptibility loci, but these explain only ∼23% of the genetic risk. Part of the ‘hidden heritability’ could be in transmissible genetic effects in which mRNA expression in the offspring depends on the parental origin of the allele (genomic imprinting), since children whose mothers have CD are more often affected than children with affected fathers. We analyzed parent-of-origin (POO) effects in Dutch and Indian cohorts of IBD patients.

Methods

We selected 28 genetic loci associated with both CD and UC, and tested them for POO effects in 181 Dutch IBD case-parent trios. Three susceptibility variants in NOD2 were tested in 111 CD trios and a significant finding was re-evaluated in 598 German trios. The UC-associated gene, BTNL2, reportedly imprinted, was tested in 70 Dutch UC trios. Finally, we used 62 independent Indian UC trios to test POO effects of five established Indian UC risk loci.

Results

We identified POO effects for NOD2 (L1007fs; OR = 21.0, P-value = 0.013) for CD; these results could not be replicated in an independent cohort (OR = 0.97, P-value = 0.95). A POO effect in IBD was observed for IL12B (OR = 3.2, P-value = 0.019) and PRDM1 (OR = 5.6, P-value = 0.04). In the Indian trios the IL10 locus showed a POO effect (OR = 0.2, P-value = 0.03).

Conclusions

Little is known about the effect of genomic imprinting in complex diseases such as IBD. We present limited evidence for POO effects for the tested IBD loci. POO effects explain part of the hidden heritability for complex genetic diseases but need to be investigated further.  相似文献   
94.
BackgroundSelf-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding.ScopeWe review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the LoliumFestuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species.ConclusionsA better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.  相似文献   
95.
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity.  相似文献   
96.
The present work is a combined structural study, using Nuclear Magnetic Resonance (NMR) and Molecular Dynamics(MD), of the amidated and the free acid forms of substance P in water and methanol. The results obtained using both approaches were compared in order to characterize the structural features of both peptides in solution. From the NMR experiments it was derived that the free acid form adopts an extended conformation at the N-terminus and a helical conformation at the C-terminal segment of the peptide in both water and methanol; these structural features are in qualitative agreement with the results of the MD simulations. No significant differences in behavior were observed between the amidated and the free acid forms of the peptide in the simulations and in the experiments carried out in water, suggesting that the different activities of these analogs are due to their different mode of interaction with the receptor rather than to their structural preferences. Finally, we propose that the structure of substance P can be partially inferred from its sequence due to the presence of a Pro-X-Pro motif on the N-terminus and a Gly-Leu sequence on the C-terminus.  相似文献   
97.
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.  相似文献   
98.
We compared infection of Nicotiana benthamiana plants by the positive-sense RNA viruses Cucumber mosaic virus (CMV), Potato virus Y (PVY), and by a Potato virus X (PVX) vector, the latter either unaltered or expressing the CMV 2b protein or the PVY HCPro suppressors of silencing, at 25°C vs. 30°C, or at standard (~401 parts per million, ppm) vs. elevated (970 ppm) CO2 levels. We also assessed the activities of their suppressors of silencing under those conditions. We found that at 30°C, accumulation of the CMV isolate and infection symptoms remained comparable to those at 25°C, whereas accumulation of the PVY isolate and those of the three PVX constructs decreased markedly, even when expressing the heterologous suppressors 2b or HCPro, and plants had either very attenuated or no symptoms. Under elevated CO2 plants grew larger, but contained less total protein/unit of leaf area. In contrast to temperature, infection symptoms remained unaltered for the five viruses at elevated CO2 levels, but viral titers in leaf disks as a proportion of the total protein content increased in all cases, markedly for CMV, and less so for PVY and the PVX constructs. Despite these differences, we found that neither high temperature nor elevated CO2 prevented efficient suppression of silencing by their viral suppressors in agropatch assays. Our results suggest that the strength of antiviral silencing at high temperature or CO2 levels, or those of the viral suppressors that counteract it, may not be the main determinants of the observed infection outcomes.  相似文献   
99.
In the Potyvirus genus, the P1 protein is the first N‐terminal product processed from the viral polyprotein, followed by the helper‐component proteinase (HCPro). In silencing suppression patch assays, we found that Potato virus Y (PVY) HCPro expressed from a P1‐HCPro sequence increased the accumulation of a reporter gene, whereas protein expressed from an HCPro sequence did not, even with P1 supplied in trans. This enhancing effect of P1 has been noted in other potyviruses, but has remained unexplained. We analysed the accumulation of PVY HCPro in infiltrated tissues and found that it was higher when expressed from P1‐HCPro than from HCPro sequences. Co‐expression of heterologous suppressors increased the steady‐state level of mRNA expressed from the HCPro sequence, but not that of protein. This suggests that, in the absence of P1 upstream, either HCPro acquires a conformation that affects negatively its activity or stability, or that its translation is reduced. To test these options, we purified HCPro expressed in the presence or absence of upstream P1, and found no difference in purification pattern and final soluble state. By contrast, alteration of the Kozak context in the HCPro mRNA sequence to favour translation increased partially suppressor accumulation and activity. Furthermore, protein activity was not lower than in protein expressed from P1‐HCPro sequences. Thus, a direct role for P1 on HCPro suppressor activity or stability, by influencing its conformation during translation, can be excluded. However, P1 could still have an indirect effect favouring HCPro accumulation. Our data highlight the relevance of cis‐acting translational elements in the heterologous expression of HCPro.  相似文献   
100.
Various plant factors are co‐opted by virus elements (RNA, proteins) and have been shown to act in pathways affecting virus accumulation and plant defence. Here, an interaction between Pepino mosaic virus (PepMV) triple gene block protein 1 (TGBp1; p26) and tomato catalase 1 (CAT1), a crucial enzyme in the decomposition of toxic hydrogen peroxide (H2O2), was identified using the yeast two‐hybrid assay, and confirmed via an in vitro pull‐down assay and bimolecular fluorescent complementation (BiFC) in planta. Each protein was independently localized within loci in the cytoplasm and nuclei, sites at which their interaction had been visualized by BiFC. Following PepMV inoculation, CAT mRNA and protein levels in leaves were unaltered at 0, 3 and 6 days (locally) and 8 days (systemically) post‐inoculation; however, leaf extracts from the last two time points contained increased CAT activity and lower H2O2 levels. Overexpression of PepMV p26 in vitro and in planta conferred the same effect, suggesting an additional involvement of TGBp1 in potexvirus pathogenesis. The accumulation of PepMV genomic and subgenomic RNAs and the expression of viral coat protein in noninoculated (systemic) leaves were reduced significantly in CAT‐silenced plants. It is postulated that, during PepMV infection, a p26–CAT1 interaction increases H2O2 scavenging, thus acting as a negative regulator of plant defence mechanisms to promote PepMV infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号