首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   29篇
  297篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   10篇
  2014年   14篇
  2013年   7篇
  2012年   19篇
  2011年   19篇
  2010年   15篇
  2009年   19篇
  2008年   12篇
  2007年   11篇
  2006年   15篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   7篇
  2001年   13篇
  2000年   8篇
  1999年   19篇
  1998年   10篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
61.
We have investigated the covalent binding of dicyclohexylcarbodiimide (DCCD) to cytochrome c oxidase in relation to its inhibition of ferrocytochrome c-induced H+ translocation by the enzyme reconstituted in lipid vesicles. DCCD bound to the reconstituted oxidase in a time- and concentration-dependent manner which appeared to correlate with its inhibition of H+ translocation. In both reconstituted vesicles and intact beef heart mitochondria, the DCCD-binding site was located in subunit III of the oxidase. The apolar nature of DCCD and relatively minor effects of the hydrophilic carbodiimide, 1-ethyl-(3-dimethylaminopropyl)-carbodiimide, on H+ translocation by the oxidase indicate that the site of action of DCCD is hydrophobic. DCCD also bound to isolated cytochrome c oxidase, though in this case subunits III and IV were labeled. The maximal overall stoichiometries of DCCD molecules bound per cytochrome c oxidase molecule were 1 and 1.6 for the reconstituted and isolated enzymes, respectively. These findings point to subunit III of cytochrome c oxidase having an important role in H+ translocation by the enzyme and indicate that DCCD may prove a useful tool in elucidating the mechanism of H+ pumping.  相似文献   
62.
Bryce, J. H. and ap Rees, T. 1985. Comparison of the respiratorymetabolism of Plantago lanceolata L. and Plantago major L.—J.exp. Bot. 36 1559–1565. The aim of this work was to discover if the respiratory metabolismof the roots of Plantago lanceolata L. differed from that ofthe roots of Plantago major L. Measurements of oxygen uptakeand dry weight of excised root systems during growth of seedlingsprovided evidence that the two species differed in the amountof respiration needed to support a given increase in dry weight.Excised root systems were given a 6-h pulse in [U-14C]sucrosefollowed by a 16.5-h chase in sucrose. The detailed distributionof 14C amongst the major components of the roots at the endof the pulse and the chase revealed no significant differencebetween the two species. Patterns of 14CO2 production from [1-14C],[2-14C], [3,4-14C], and [6-14C]glucose of excised root systemsfrom plants of three ages were similar for the two species.It is suggested that there is no conclusive evidence for anysignificant inherent difference in the respiratory metabolismof the roots of the two species. Key words: 14C sugar metabolism, respiration, roots, Plantago  相似文献   
63.
64.
65.
Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   
66.
Hepatocellular carcinoma (HCC) represents the sixth most frequent human cancer worldwide and is characterized by rapid progression as well as resistance to systemic chemotherapy. Recently, glycolysis has emerged as a potent driving force of tumor growth and therapy failure. The precise role of glycolysis for the pathogenesis of human HCC has not been elucidated thus far. Therefore, we have conducted a comprehensive analysis of the expression patterns of central glycolysis-related factors [glucose transporter-1 and -2 (Glut-1 and Glut-2), phosphoglycerate kinase-1 (PGK-1) and hypoxia-inducible factor-1α (HIF-1α)] in a large cohort of benign and malignant human liver samples. PGK-1 protein and gene expression was scant in normal liver, elevated in cirrhotic livers and most intense in HCC. Strong immunoreactivity of Glut-2 was noted in cirrhotic livers, whereas in HCC it was only expressed in 50% of examined cases. Strikingly, PGK-1 as well as Glut-2 protein expression was indicative of poor patient prognosis. Glut-1 protein was absent in neoplastic hepatocytes but prominent in tumor-associated endothelial cells. Specific nuclear staining of HIF-1α was noted in only 12% of HCC samples. Our data point toward a tumor-promoting function of glycolysis in HCC and establish PGK-1 as an independent prognostic parameter. Furthermore, the endothelial-specific expression of Glut-1 makes a special dependence of vessels on glucose reasonable to assume. In summary, we believe our analysis warrants the validation of glycolytic inhibitors as innovative treatment approaches of human HCC. Christoph Benckert and Thorsten Cramer have contributed equally to this work.  相似文献   
67.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   
68.
1. Evaluating variation, or 'conditionality', in plant interactions is crucial to understanding their ecological importance and predicting where they might be at play. Much is known about conditionality for competition, facilitation and herbivory, but not for allelopathy, which likely contributes to the equivocal nature of reports on this topic. Centaurea maculosa (spotted knapweed) is an invasive species in North America, whose success has been attributed, at least in part, to the allelochemical root exudate (±)-catechin.
2. Understanding the ecological relevance of (±)-catechin necessitates determining how it interacts with various soil components. We found that some metals caused rapid declines in measurable (±)-catechin, while calcium impeded its auto-oxidation, maintaining concentrations higher than for (±)-catechin alone. Certain (±)-catechin–metal complexes were more phytotoxic than (±)-catechin alone, while others showed lower toxicity.
3. The variable phytotoxicity of these complexes suggests that (±)-catechin effects are enhanced, mitigated or otherwise affected by complexation with different metals and perhaps other soil components.
4.  Synthesis . These findings serve to illustrate that the precise chemical forms, interactions and effects of catechin in the environment are highly variable and that further examination is warranted to increase our understanding of its role in invasion and allelopathy. The conditional effects observed for catechin detection and phytotoxicity likely extend to related allelopathic compounds, other root exudates and potentially other systems involving chemically complex and spatially heterogeneous environments.  相似文献   
69.
The ependymal multiciliated epithelium in the brain restricts the cerebrospinal fluid to the cerebral ventricles and regulates its flow. We report here that mice deficient for myosin IXa (Myo9a), an actin-dependent motor molecule with a Rho GTPase–activating (GAP) domain, develop severe hydrocephalus with stenosis and closure of the ventral caudal 3rd ventricle and the aqueduct. Myo9a is expressed in maturing ependymal epithelial cells, and its absence leads to impaired maturation of ependymal cells. The Myo9a deficiency further resulted in a distorted ependyma due to irregular epithelial cell morphology and altered organization of intercellular junctions. Ependymal cells occasionally delaminated, forming multilayered structures that bridged the CSF-filled ventricular space. Hydrocephalus formation could be significantly attenuated by the inhibition of the Rho-effector Rho-kinase (ROCK). Administration of ROCK-inhibitor restored maturation of ependymal cells, but not the morphological distortions of the ependyma. Similarly, down-regulation of Myo9a by siRNA in Caco-2 adenocarcinoma cells increased Rho-signaling and induced alterations in differentiation, cell morphology, junction assembly, junctional signaling, and gene expression. Our results demonstrate that Myo9a is a critical regulator of Rho-dependent and -independent signaling mechanisms that guide epithelial differentiation. Moreover, Rho-kinases may represent a new target for therapeutic intervention in some forms of hydrocephalus.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号