首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   55篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   13篇
  2018年   12篇
  2017年   19篇
  2016年   27篇
  2015年   33篇
  2014年   37篇
  2013年   56篇
  2012年   76篇
  2011年   59篇
  2010年   37篇
  2009年   37篇
  2008年   82篇
  2007年   81篇
  2006年   62篇
  2005年   64篇
  2004年   51篇
  2003年   53篇
  2002年   42篇
  2001年   15篇
  2000年   14篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有972条查询结果,搜索用时 15 毫秒
11.
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.  相似文献   
12.
TOR (target of rapamycin) signaling regulates cell growth and division in response to environmental stimuli such as the availability of nutrients and various forms of stress. The vegetative growth of fission yeast cells, unlike other eukaryotic cells, is not inhibited by treatment with rapamycin. We found that certain mutations including pmc1Δ (Ca2+-ATPase), cps9-193 (small GTPase, Ryh1) and cps1-12 (1,3-β-d-glucan synthase, Bgs1) confer a rapamycin-sensitive phenotype to cells under salt stress with potassium chloride (>0.5 M). Cytometric analysis revealed that the mutant cells were unable to enter the mitotic cell cycle when treated with the drug under salt stress. Gene cloning and overexpression experiments revealed that the sensitivity to rapamycin was suppressed by the ectopic expression of tyrosine phosphatases, Pyp1 and Pyp2, which are negative regulators of Spc1/Sty1 mitogen-activated protein kinase (MAPK). The level of tyrosine phosphorylation on Spc1 was higher and sustained substantially longer in these mutants than in the wild type under salt stress. The hyperphosphorylation was significantly suppressed by overexpression of pyp1 + with concomitant resumption of the mutant cells’ growth. In fission yeast, TOR signaling has been thought to stimulate the stress-response pathway, because mutations of TORC2 components such as Tor1, Sin1 and Ste20 result in similar sensitive phenotypes to environmental stress. The present study, however, strongly suggests that TOR signaling is required for the down-regulation of a hyperactivated Spc1 for reentry into the mitotic cell cycle. This finding may shed light on our understanding of a new stress-responsive mechanism in TOR signaling in higher organisms.  相似文献   
13.
Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.  相似文献   
14.
This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 106 copies ml?1 in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.  相似文献   
15.
16.
Abstract

A response surface methodology was used to build a model to predict reductions in uropathogenic Escherichia coli biofilms in response to three compounds: cranberry extract [CB] at 3.0–9.0%, and caprylic acid [CAR] and thymol [TM] at 0.01%–0.05%. The predictive model for microbial reduction had a high regression coefficient (R2?=?0.9988), and the accuracy of the model was verified (R2?=?0.9527). Values of CAR, TM, and the quadratic term CAR2 were the most significant (P?10 reduction) determined by ridge analysis were 8.3% CB +0.04% CAR +0.04% TM at 37?°C for 1?min. The model could be used to predict the most cost-efficient amounts of antimicrobial agents for anti-urinary tract infection products such as catheter lock solution and antimicrobial coatings for catheters.  相似文献   
17.
The small G protein Rap1 can mediate “inside-out signaling” by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.  相似文献   
18.
19.
Gene therapy is expected to treat various incurable diseases including viral infections, autoimmune disorders, and cancers. Cationic lipids (CL) have been used as carriers of therapeutic DNAs for gene therapy because they can form a complex with DNA and such a complex can be incorporated into cells and transport the bound DNA to cytosol. The CL/DNA complexes are called lipoplexes and categorized as a non-viral vector. Lipoplexes are often prepared by adding a neutral phospholipid dioleoylphosphatidylethanolamine (DOPE) to CL in order to enhance transfection. However, the role of DOPE is not fully understood. We synthesized a new CL having an ethylenediamine cationic head group, denoted by DA, and found that addition of DOPE to DA achieved a good efficiency, almost in the similar level of commonly used transfection reagent Lipofectamine 2000 (Invitrogen). The composition of DA:DOPE = 1:1 showed the highest efficiency. This lipoplex showed structural transition when pH was changed from 7 to 4, corresponding pH lowering in late endosome, while DOPE itself showed structural transition at more basic pH around 8. The present data showed that the DOPE/DA composition determines the structural transition pH and choosing a suitable pH, i.e., a suitable composition, is essential to increase the transfection efficiency.  相似文献   
20.
Yumi Takemoto 《Amino acids》2013,44(3):1053-1060
The sulfur-containing non-essential amino acid l-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to l-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected d-cysteine produced no cardiovascular changes, while l-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of l-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of l-cysteine-injected rats than those injected with d-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of l-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of l-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号