首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9303篇
  免费   844篇
  国内免费   20篇
  2023年   77篇
  2022年   168篇
  2021年   287篇
  2020年   123篇
  2019年   195篇
  2018年   235篇
  2017年   212篇
  2016年   294篇
  2015年   467篇
  2014年   458篇
  2013年   610篇
  2012年   767篇
  2011年   704篇
  2010年   422篇
  2009年   335篇
  2008年   493篇
  2007年   490篇
  2006年   445篇
  2005年   393篇
  2004年   326篇
  2003年   277篇
  2002年   317篇
  2001年   238篇
  2000年   265篇
  1999年   190篇
  1998年   73篇
  1997年   53篇
  1996年   60篇
  1995年   76篇
  1994年   57篇
  1993年   46篇
  1992年   104篇
  1991年   77篇
  1990年   93篇
  1989年   99篇
  1988年   72篇
  1987年   54篇
  1986年   63篇
  1985年   75篇
  1984年   40篇
  1983年   39篇
  1982年   25篇
  1981年   29篇
  1980年   26篇
  1979年   40篇
  1978年   20篇
  1977年   23篇
  1975年   18篇
  1974年   14篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Mittler R  Lam E 《Plant physiology》1995,108(2):489-493
Programmed cell death (pcd) is thought to occur during the autolysis of xylem vessels. Although several ultrastructural aspects of this differentiation process have been characterized, certain key aspects of this process remain unsolved. Here we demonstrate in pea (Pisum sativum) that nuclei of vessel elements undergoing pcd contain fragmented nDNA. This finding may provide evidence for the activation of a DNA degradation mechanism prior to the final disruption of the nucleus that occurs during the autolysis stage of this differentiation process. In situ detection of DNA fragmentation in nuclei of vessel elements undergoing pcd may therefore suggest that this death process involves the activation of a mechanism for DNA degradation, similar to that activated during apoptosis in animal cells. In addition, this differentiation process may serve as a useful positive control for the in situ detection of pcd in other developmental pathways and during the hypersensitive response of plants to avirulent pathogens.  相似文献   
132.
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium hom dr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isoleucine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.  相似文献   
133.
134.
Selected morphometrics of Heterorhabditis bacteriophora and seven species of Steinernema from in vivo culture were compared in relation to time of harvest. In addition, five Steinernema species were reared in vitro and their morphometrics were compared with those from in vivo culture. With in vivo culture, there was generally a negative linear relationship between body length of infective juveniles (IJ) and time of harvest. The distance from the anterior end to the excretory pore (EP) and the tail length (T) of IJ also varied with time of harvest. The E percentage (= EP/T x 100) was the least variable. Body lengths of IJ reared in vitro were much less than those of IJ reared in vivo. The study suggests that IJ harvested from in vivo culture within 1 week of emergence from cadavers are best for species identification. Infective juveniles from in vitro culture should not be used for species identification.  相似文献   
135.
The activity of glutamine synthetase (GS) fromStreptomyces aureofaciens was regulated by the availability of the nitrogen source. Rich nitrogen sources repressed GS synthesis and increased GS adenylylation. The enzyme was purified 270-fold to virtual homogeneity with 37% recovery. The molar mass of the native enzyme and its subunits was determined to be 620 and 55 kDa, respectively, indicating that GS is composed of 12 identical subunits. The enzyme has a hexagonal-bilayered structure as observed by electron microscopy. The isoelectric point of the purified GS was at pH 4.2. The enzyme was stable for 1 h at 50°C but lost activity rapidly when incubated at 65 and 70°C. Mg2+ supported relative synthetic activity of 100 and 72%, respectively, with the corresponding pH optima of 7.3 and 7.0. Mn2+ ions activated transferase activity at a pH optimum of 7.0. The temperature optimum for all GS activities was 50°C. Intermediates of the citric acid cycle exerted insignificant effects on the synthetic activities. There was no SH-group essential for the GS activity.  相似文献   
136.
M. Nguyen  A. Alfonso  C. D. Johnson    J. B. Rand 《Genetics》1995,140(2):527-535
We characterized 18 genes from Caenorhabditis elegans that, when mutated, confer recessive resistance to inhibitors of acetylcholinesterase. These include previously described genes as well as newly identified genes; they encode essential as well as nonessential functions. In the absence of acetylcholinesterase inhibitors, the different mutants display a wide range of behavioral deficits, from mild uncoordination to almost complete paralysis. Measurements of acetylcholine levels in these mutants suggest that some of the genes are involved in presynaptic functions.  相似文献   
137.
138.
Deletions in the Drosophila minichromosome Dp1187 were used to investigate the genetic interactions of trans-acting genes with the centromere. Mutations in several genes known to have a role in chromosome inheritance were shown to have dominant effects on the stability of minichromosomes with partially defective centromeres. Heterozygous mutations in the ncd and klp3A kinesin-like protein genes strongly reduced the transmission of minichromosomes missing portions of the genetically defined centromere, but had little effect on the transmission of minichromosomes with intact centromeres. Using this approach, ncd and klp3A were shown to require only the centromeric region of the chromosome for their roles in chromosome segregation. Increased gene dosage also affected minichromosome transmission and was used to demonstrate that the nod kinesin-like protein gene interacts genetically with the centromere, in addition to interacting with extracentromeric regions as demonstrated previously. The results presented in this study strongly suggest that dominant genetic interactions between mutations and centromere-defective minichromosomes could be used effectively to identify novel genes necessary for centromere function.  相似文献   
139.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   
140.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号