首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   47篇
  2023年   2篇
  2022年   10篇
  2021年   17篇
  2020年   16篇
  2019年   12篇
  2018年   15篇
  2017年   8篇
  2016年   16篇
  2015年   21篇
  2014年   22篇
  2013年   37篇
  2012年   37篇
  2011年   45篇
  2010年   26篇
  2009年   21篇
  2008年   23篇
  2007年   24篇
  2006年   26篇
  2005年   26篇
  2004年   20篇
  2003年   26篇
  2002年   23篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1986年   7篇
  1984年   2篇
  1981年   4篇
  1978年   4篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1965年   3篇
  1941年   1篇
  1940年   1篇
排序方式: 共有589条查询结果,搜索用时 15 毫秒
71.
Long-lasting siRNA-based down-regulation of gene of interest can be achieved by lentiviral-based expression vectors driving the production of short hairpin RNA (shRNA). We investigated an attractive therapeutic approach to target the expression of proinflammatory GMF by using lentiviral vector encoding GMF-specific shRNA to reduce GMF levels in the spinal cord and brain of mice. To determine the effect of GMF-shRNA on GMF protein levels, we performed quantitative ELISA analysis in brain and in thoracic, cervical and lumbar regions of spinal cord from mice followed by GMF-shRNA (G-shRNA) or control shRNA (C-shRNA) treatments. Our results show a marked reduction of GMF protein levels in brain and spinal cord of mice treated with GMF-shRNA compared to control shRNA treatment. Consistent with the GMF protein analysis, the immunohistochemical examination of the spinal cord sections of EAE mice treated with GMF-shRNA showed significantly reduced GMF-immunoreactivity. Thus, the down-regulation of GMF by GMF-shRNA was efficient and wide spread in CNS as evident by the significantly reduced levels of GMF protein in the brain and spinal cord of mice.  相似文献   
72.
73.
Feruloyl esterases can liberate ferulic acid (FA) from plant cell wall polymers. They are expressed by plant pathogenic fungi and could play a role in pathogenicity, although this question has not been addressed yet. The fungus Fusarium graminearum is the principal causal agent of fusarium head blight (FHB) and gibberella ear rot (GER), major diseases of wheat, barley, and maize in all temperate regions of the world. The F. graminearum genome contains seven genes with strong homology to feruloyl esterase (FAE) sequences. Phylogenetic analysis showed that these included three type B, three type C, and one type D FAE genes. Expression profiling of the seven FAE genes showed complex regulation patterns unique to each gene. In F. graminearum-infected plant tissues, the FAE genes exhibited host-specific gene expression. On wheat, FAEB1 and FAED1 were strongly expressed while FAEB2, FAEB3, and FAEC1 were expressed at more modest levels. On maize, only FAEB3, FAEC1, and FAED1 were expressed and at low levels. When growing F. graminearum in liquid culture, only FAEB1 and FAEC1 were expressed. Both genes were induced by a small group of related aromatic compounds including FA, caffeic acid, and p-coumaric acid. FAEB1 was induced by xylose, while repressed by glucose and galactose. FAEC1 was constitutively expressed at low levels in the presence of those sugars. Expression of the other five FAE genes was not detected in the culture conditions used. To determine if FAE genes were important for pathogenicity of F. graminearum, mutant strains inactivated for faeB1?, faeD1? or both genes were constructed and tested on wheat plants. No statistically significant change in pathogenicity and no compensatory expression of the other FAE genes were observed in the fae gene mutants. Our results show that FAEB1 and FAED1 are not required for pathogenicity of F. graminearum on wheat.  相似文献   
74.

Background

Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of–function genetic abnormalities. We report the first in-human systemic gene therapy clinical trial of tumor suppressor gene TUSC2.

Methods

Patients with recurrent and/or metastatic lung cancer previously treated with platinum-based chemotherapy were treated with escalating doses of intravenous N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP):cholesterol nanoparticles encapsulating a TUSC2 expression plasmid (DOTAP:chol-TUSC2) every 3 weeks.

Results

Thirty-one patients were treated at 6 dose levels (range 0.01 to 0.09 milligrams per kilogram). The MTD was determined to be 0.06 mg/kg. Five patients achieved stable disease (2.6–10.8 months, including 2 minor responses). One patient had a metabolic response on positron emission tomography (PET) imaging. RT-PCR analysis detected TUSC2 plasmid expression in 7 of 8 post-treatment tumor specimens but not in pretreatment specimens and peripheral blood lymphocyte controls. Proximity ligation assay, performed on paired biopsies from 3 patients, demonstrated low background TUSC2 protein staining in pretreatment tissues compared with intense (10–25 fold increase) TUSC2 protein staining in post-treatment tissues. RT-PCR gene expression profiling analysis of apoptotic pathway genes in two patients with high post-treatment levels of TUSC2 mRNA and protein showed significant post-treatment changes in the intrinsic apoptotic pathway. Twenty-nine genes of the 82 tested in the apoptosis array were identified by Igenuity Pathway Analysis to be significantly altered post-treatment in both patients (Pearson correlation coefficient 0.519; p<0.01).

Conclusions

DOTAP:chol-TUSC2 can be safely administered intravenously in lung cancer patients and results in uptake of the gene by human primary and metastatic tumors, transgene and gene product expression, specific alterations in TUSC2-regulated pathways, and anti-tumor effects (to our knowledge for the first time for systemic DOTAP:cholesterol nanoparticle gene therapy).

Trial Registration

ClinicalTrials.gov NCT00059605  相似文献   
75.
76.
Neurons and endocrine cells use a complex array of signaling molecules to communicate with each other and with various targets. The majority of these signaling molecules are stored in specialized organelles awaiting release on demand: 40-60 nm vesicles carry conventional or small molecule neurotransmitters, and 200-400 nm granules contain bioactive peptides. The supply of small molecule neurotransmitters is tightly regulated by local feedback of synthetic rates and transport processes at sites of release. The larger granules that contain bioactive peptides present the secretory cell with special challenges, as the peptide precursors are inserted into the lumen of the secretory pathway in the cell soma and undergo biosynthetic processing while being transported to distant sites for eventual secretion. One solution to this dilemma in information handling has been to employ proteolytic cleavage of secretory granule membrane proteins to produce cytosolic fragments that can signal to the nucleus, affecting gene expression. The use of regulated intramembrane proteolysis to signal from secretory granules to the nucleus is compared to its much better understood role in relaying information from the endoplasmic reticulum by SREBP and ATF6 and from the plasma membrane by cadherins, Notch and ErbB4.  相似文献   
77.
The mammalian TLRs (Toll-like receptors) mediate the rapid initial immune response to pathogens through recognition of pathogen-associated molecular patterns. The pathogen pattern to which TLR8 responds is ssRNA (single-stranded RNA) commonly associated with ssRNA viruses. TLR8 also responds to small, purine-like molecules including the imidazoquinoline IRMs (immune-response modifiers). The IRMs include molecules that selectively activate TLR7, selectively activate TLR8 or non-selectively activate both TLR7 and TLR8. Using HEK-293 cells (human embryonic kidney cells) stably expressing an NF-kappaB (nuclear factor kappaB)/luciferase promoter-reporter system as a model system, we have examined the regulation of TLR8 using the non-selective TLR7/8 agonist, 3M-003. Using conservative tyrosine to phenylalanine site-directed mutation, we show that of the 13 tyrosine residues resident in the cytosolic domain of TLR8, only three appear to be critical to TLR8 signalling. Two of these, Tyr898 and Tyr904, reside in the Box 1 motif and the third, Tyr1048, lies in a YXXM putative p85-binding motif. TLR8 is tyrosine-phosphorylated following 3M-003 treatment and TLR8 signalling is inhibited by tyrosine kinase inhibitors. Treatment with 3M-003 results in the association of the p85 regulatory subunit of PI3K (phosphoinositide 3-kinase) with TLR8 and this association is inhibited by tyrosine to phenylalanine mutation of either the YXXM or Box 1 motifs. As a further consequence of activation by 3M-003, TLR8 is modified to yield both higher and lower molecular mass species. These species include a monoubiquitinated form as deduced from ubiquitin peptide sequencing by HPLC/MS/MS (tandem MS).  相似文献   
78.
79.
Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis.In the present investigation,we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis.The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver.Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis.Platelet aggregation was also measured in the presence of the eNOS inhibitor,diphenylene iodinium chloride (DIC).The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects.During the course of platelet aggregation,concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples,whereas the elevation was not significant in platelets of patients with cirrhosis.A parallel increase was observed in the levels of NO and NOS activity.In the presence of the eNOS inhibitor,platelet aggregation was enhanced and accompanied by an elevated calcium level.The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS.Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis.The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance,and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.  相似文献   
80.

Crassostrea madrasensis is an important fouling oyster in tropical industrial cooling water systems. C. madrasensis individuals attach to surfaces by cementing one of their two valves to the substratum. Therefore, oyster fouling creates more problems than mussel fouling in the cooling conduits of power stations, because unlike the latter, the shell of the former remains attached to the substratum even after the death of the animal. However, there are no published reports on the tolerance of this species to chlorination and heat treatment. The mortality pattern and physiological behaviour (oxygen consumption and filtration rate) of three size groups (13 mm, 44 mm and 64 mm mean shell length) of C. madrasensis were studied at different residual chlorine concentrations (0.25, 0.5, 0.75, 1, 2, 3 to 5 mg lm 1) and temperatures (30°C to 45°C). The effect of shell size (=age) on C. madrasensis mortality in the presence of chlorine and taking into account temperature was significant, with the largest size group oysters showing highest resistance. At 1 mg lm 1 residual chlorine, the 13 mm and 64 mm size group oysters took 504 h (21 d) and 744 h (31 d), respectively to reach 100% mortality. At 39°C, the 13 mm size group oysters took 218 min to reach 100% mortality, whereas the 64 mm size group oysters took 325 min. The oxygen consumption and filtration rate of C. madrasensis showed progressive reduction with increasing residual chlorine concentrations. However, the filtration rate and oxygen consumption responses of C. madrasensis were not significantly different between 30°C (control) and 37.5°C. There was a sharp decrease in the filtration rate and oxygen consumption at 38.5°C. A comparison of the present mortality data with previous reports on other bivalves suggests that the chlorine tolerance of C. madrasensis lies in between that of Perna viridis and Perna perna, while its temperature tolerance is significantly higher than that of the other two bivalve species. However, in power station heat exchangers, where simultaneous chlorine and thermal stresses are existent, C. madrasensis may have an edge over other common foulants, because of its high temperature tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号