首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2004年   4篇
  2003年   1篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1967年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
21.
ABSTRACT: Hébert-Losier, K, Schneiders, AG, García, JA, Sullivan, SJ, and Simoneau, GG. Influence of knee flexion angle and age on triceps surae muscle activity during heel raises. J Strength Cond Res 26(11): 3124-3133, 2012-Triceps surae and Achilles tendon injuries are frequent in sports medicine, particularly in middle-aged adults. Muscle imbalances and weakness are suggested to be involved in the etiology of these conditions, with heel-raise testing often used to assess and treat triceps surae (TS) injuries. Although heel raises are recommended with the knee straight for gastrocnemius and bent for soleus (SOL), the extent of muscle selectivity in these positions is not clear. This study aimed to determine the influence of knee angle and age on TS muscle activity during heel raises. Forty-eight healthy men and women were recruited from a younger-aged (18-25 years) and middle-aged (35-45 years) population. All the subjects performed unilateral heel raises in 0° and 45° knee flexion (KF). Soleus, gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) surface electromyography signals were processed to compute root-mean-square amplitudes, and data were analyzed using mixed-effects models and stepwise regression. The mean TS activity during heel raises was 23% of maximum voluntary isometric contraction when performed in 0° KF and 21% when in 45°. Amplitudes were significantly different between TS muscles (p < 0.001) and KF angles (p < 0.001), with a significant interaction (p < 0.001). However, the age of the population did not influence the results (p = 0.193). The findings demonstrate that SOL activity was 4% greater when tested in 45° compared with 0° KF and 5% lower in the GM and GL. The results are consistent with the recommended use of heel raises in select knee positions for assessing, training, and rehabilitating the SOL and gastrocnemius muscles; however, the 4-5% documented change in activity might not be enough to significantly influence clinical outcome measures or muscle-specific benefits. Contrary to expectations, TS activity did not distinguish between middle-aged and younger-aged adults, despite the higher injury prevalence in middle age.  相似文献   
22.
The multiple transferable resistance (mTR) pump from Neisseria gonorrhoeae MtrCDE multidrug pump is assembled from the inner and outer membrane proteins MtrD and MtrE and the periplasmic membrane fusion protein MtrC. Previously we established that while there is a weak interaction of MtrD and MtrE, MtrC binds with relatively high affinity to both MtrD and MtrE. MtrD conferred antibiotic resistance only when it was expressed with MtrE and MtrC, suggesting that these proteins form a functional tripartite complex in which MtrC bridges MtrD and MtrE. Furthermore, we demonstrated that MtrC interacts with an intraprotomer groove on the surface of MtrE, inducing channel opening. However, a second groove is apparent at the interface of the MtrE subunits, which might also be capable of engaging MtrC. We have now established that MtrC can be cross-linked to cysteines placed in this interprotomer groove and that mutation of residues in the groove impair the ability of the pump to confer antibiotic resistance by locking MtrE in the closed channel conformation. Moreover, MtrE K390C forms an intermolecular disulfide bond with MtrC E149C locking MtrE in the open channel conformation, suggesting that a functional salt bridge forms between these residues during the transition from closed to open channel conformations. MtrC forms dimers that assemble into hexamers, and electron microscopy studies of single particles revealed that these hexamers are arranged into ring-like structures with an internal aperture sufficiently large to accommodate the MtrE trimer. Cross-linking of single cysteine mutants of MtrC to stabilize the dimer interface in the presence of MtrE, trapped an MtrC-MtrE complex with a molecular mass consistent with a stoichiometry of 3:6 (MtrE(3)MtrC(6)), suggesting that dimers of MtrC interact with MtrE, presumably by binding to the two grooves. As both MtrE and MtrD are trimeric, our studies suggest that the functional pump is assembled with a stoichiometry of 3:6:3.  相似文献   
23.
24.
25.
Mevalonic aciduria (MA) and hyper-IgD and periodic fever syndrome (HIDS) are two inherited disorders both caused by depressed mevalonate kinase (MK) activity. MK is the first enzyme to follow the highly regulated 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), which catalyzes the rate-limiting step in the isoprenoid/cholesterol biosynthesis pathway. In fibroblasts of MA patients, but not of HIDS patients, HMGR activity is elevated under normal growth conditions. This activity is down-regulated when cells are supplemented with the isoprenoid precursors geraniol, farnesol, and geranylgeraniol, and a mixture of 25-hydroxycholesterol and cholesterol. This indicates that the regulation of the pathway in these cells is not disturbed. The elevated HMGR activity is probably due to a shortage of non-sterol isoprenoid end products, as indicated by normal HMGR mRNA levels in MA fibroblasts. Furthermore, the HMGR activity in MA cells was more sensitive to geranylgeraniol suppression and less sensitive to sterol suppression than the HMGR activity in low density lipoprotein receptor-deficient cells. HMGR activity in MA cells was down-regulated also by addition of its product mevalonate to the culture medium. Thus, it appears that the elevation of mevalonate levels, which are high in MA patients and moderate in HIDS patients, allows the cells to compensate for the depressed MK activity. Indeed, the isoprenylation of Ras and RhoA protein appeared normal in HIDS and MA fibroblasts under normal conditions but showed increased sensitivity toward inhibition of HMGR by simvastatin. Our results indicate that MK-deficient cells maintain the flux through the isoprenoid/cholesterol biosynthesis pathway by elevating intracellular mevalonate levels.  相似文献   
26.
27.
28.
29.
BACKGROUND/METHODS: To characterize the repertoire of T-cell epitopes on the hepatitis C virus (HCV) core protein, we studied major histocompatibility complex (MHC) class I binding of 75 decapeptides on 20 human B-cell lines and murine spleen cells using a flow cytometric assay. The results were compared with MHC class I stabilization on T2 cells, the SYFPEITHI algorithm, and known T-cell epitopes from the literature. RESULTS: Binding of peptides proved to be specific for MHC class I molecules. We observed peak fluorescence signals at positions amino acids (aa) 35-44, aa 87-96, aa 131-140, and aa 167-176 in virtually all HLA-A2-positive cell lines. These sites corresponded to T-cell epitopes predicted by SYFPEITHI and the positions of known T-cell epitopes, whereas T2 stabilization was at variance for two peptides. The assay was applied to HLA-A2-negative cells and murine spleen cells without further modification, and identified additional peptides, corresponding to known T-cell epitopes. CONCLUSIONS: Peptide binding to different MHC class I alleles can be mapped rapidly by a flow cytometric assay and enables a first orientation on the sites of possible T-cell epitopes. Application of this assay to HCV core suggests a rather limited repertoire of epitopes in the Caucasoid population.  相似文献   
30.
Abstract

Mild traumatic brain injuries (mTBI) are prevalent and can result in significant debilitation. Current diagnostic methods have implicit limitations, with clinical assessment tools reliant on subjective self-reported symptoms or non-specific clinical observations, and commonly available imaging techniques lacking sufficient sensitivity to detect mTBI. A blood biomarker would provide a readily accessible detector of mTBI to meet the current measurement gap. Suitable options would provide objective and quantifiable information in diagnosing mTBI, in monitoring recovery, and in establishing a prognosis of resultant neurodegenerative disease, such as chronic traumatic encephalopathy (CTE). A biomarker would also assist in progressing research, providing suitable endpoints for testing therapeutic modalities and for further exploring mTBI pathophysiology. This review highlights the most promising blood-based protein candidates that are expressed in the central nervous system (CNS) and released into systemic circulation following mTBI. To date, neurofilament light (NF-L) may be the most suitable candidate for assessing neuronal damage, and glial fibrillary acidic protein (GFAP) for assessing astrocyte activation, although further work is required. Ultimately, the heterogeneity of cells in the brain and each marker’s limitations may require a combination of biomarkers, and recent developments in microRNA (miRNA) markers of mTBI show promise and warrant further exploration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号