首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   27篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2016年   6篇
  2015年   14篇
  2014年   12篇
  2013年   14篇
  2012年   16篇
  2011年   23篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   14篇
  2003年   14篇
  2002年   7篇
  2001年   7篇
  2000年   10篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1994年   3篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1983年   2篇
  1979年   6篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1964年   1篇
  1963年   1篇
  1945年   1篇
  1943年   1篇
  1934年   1篇
  1931年   1篇
  1927年   1篇
  1926年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
81.
Large-scale genotyping of complex DNA   总被引:21,自引:0,他引:21  
Genetic studies aimed at understanding the molecular basis of complex human phenotypes require the genotyping of many thousands of single-nucleotide polymorphisms (SNPs) across large numbers of individuals. Public efforts have so far identified over two million common human SNPs; however, the scoring of these SNPs is labor-intensive and requires a substantial amount of automation. Here we describe a simple but effective approach, termed whole-genome sampling analysis (WGSA), for genotyping thousands of SNPs simultaneously in a complex DNA sample without locus-specific primers or automation. Our method amplifies highly reproducible fractions of the genome across multiple DNA samples and calls genotypes at >99% accuracy. We rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups. We also determined the ancestral allele for 8,386 SNPs by genotyping chimpanzee and gorilla DNA. WGSA is highly scaleable and enables the creation of ultrahigh density SNP maps for use in genetic studies.  相似文献   
82.
The highly conserved RAD51 protein has a central role in homologous recombination. Five novel RAD51-like genes have been identified in mammalian cells, but little is known about their functions. A DNA damage-sensitive hamster cell line, irs3, was found to have a mutation in the RAD51L2 gene and an undetectable level of RAD51L2 protein. Resistance of irs3 to DNA-damaging agents was significantly increased by expression of the human RAD51L2 gene, but not by other RAD51-like genes or RAD51 itself. Consistent with a role for RAD51L2 in homologous recombination, irs3 cells show a reduction in sister chromatid exchange, an increase in isochromatid breaks, and a decrease in damage-dependent RAD51 focus formation compared with wild type cells. As recently demonstrated for human cells, we show that RAD51L2 forms part of two separate complexes of hamster RAD51-like proteins. Strikingly, neither complex of RAD51-like proteins is formed in irs3 cells. Our results demonstrate that RAD51L2 has a key role in mammalian RAD51-dependent processes, contingent on the formation of protein complexes involved in homologous recombination repair.  相似文献   
83.
Demonstration of chlamydial endotoxin-like activity   总被引:5,自引:0,他引:5  
  相似文献   
84.
Continuous centrifugation of large volumes of water from natural southeastern lakes allowed quantitative detection of Legionella pneumophila by direct immunofluorescent staining. Positive samples were injected intraperitoneally into guinea pigs, and the L. pneumophila were isolated and identified by their morphological, cultural, physiological, and serological characteristics.  相似文献   
85.
The formation of clustered DNA damage sites is a unique feature of ionizing radiation. Recent studies have shown that the repair of lesions within clusters may be compromised, but little is understood about the mutagenic consequences of such damage sites. Using a plasmid-based method, damaged DNA containing uracil positioned at 1–5 bp separations from 8-oxo-7,8-dihydroguanine on the complementary strand was transfected into wild-type Escherichia coli or into strains lacking the DNA glycosylases Fpg and MutY. Mutation frequencies were found to be significantly higher for clustered damage sites than for single lesions. The loss of MutY gave a large relative increase in mutation frequency and a strain lacking both Fpg and MutY showed even higher mutation frequencies, up to nearly 40% of rescued plasmid. In these strains, the mutation frequency decreases with increasing spacing of the uracil from the 8-oxo-7,8-dihydroguanine site. Sequencing of plasmid DNA carrying clustered damage, following rescue from bacteria, showed that almost all of the mutations are GC→TA transversions. The data suggest that at clustered damage sites, depending on lesion spacing, the action of Fpg is compromised and post-replication processing of lesions by MutY is the most important mechanism for protection against mutagenesis.  相似文献   
86.
Growth and development are dependent on the faithful duplication of cells. Duplication requires accurate genome replication, the repair of any DNA damage, and the precise segregation of chromosomes at mitosis; molecular checkpoints ensure the proper progression and fidelity of each stage. Loss of any of these highly conserved functions may result in genetic instability and proneness to cancer. Here we show that highly significant increases in chromosome missegregation occur in cell lines lacking the RAD51-like genes XRCC2 and XRCC3. This increased missegregation is associated with fragmentation of the centrosome, a component of the mitotic spindle, and not with loss of the spindle checkpoint. Our results show that unresolved DNA damage triggers this instability, and that XRCC2 and XRCC3 are potential tumour-suppressor genes in mammals.  相似文献   
87.
Lycopersicon hirsutum Dunal is very resistant to arthropod herbivory, and research on causes of resistance has often implicated trichomes and their secretions. To better understand relationships among resistance, repellency, and 2,3-dihydrofarnesoic acid, a trichome-borne sesquiterpenoid spider mite repellent, two tomato, Lycopersicon esculentum Miller, varieties were interbred with a highly resistant, spider mite repellent accession (LA1363) of L. hirsutum. Backcross and F2 generations were produced with each tomato variety. Whole leaves of 99 hybrids were bioassayed with twospotted spider mites, Tetranychus urticae Koch, allowing selection of six hybrids (two susceptible and four resistant) for each generation of each family. When these 24 hybrids were characterized for spider mite repellency with thumbtack bioassays, two hybrids had repellent leaflets, demonstrating that repellency was genetically transferred to interspecific tomato hybrids. Leaflet washes containing trichome secretions from each of three hybrids, including the two having repellent leaflets, were repellent in bridge bioassays. For the two hybrids having repellent leaflets and leaflet washes, removal of trichome secretions by dipping leaflets in methanol eliminated leaflet repellency. 2,3-Dihydrofarnesoic acid was present in trichome secretions of the hybrids having leaflet repellency, and it also was present in secretions of other hybrids, indicating that its presence is essential, but not sufficient for leaflet repellency. With regard to resistance, 16 of the hybrids tested had been identified as resistant in a whole leaf bioassay, but only two had repellent leaflets, indicating that other mechanisms of resistance are present in the resistant L. hirsutum parent.  相似文献   
88.
The XRCC genes: expanding roles in DNA double-strand break repair   总被引:3,自引:0,他引:3  
Thacker J  Zdzienicka MZ 《DNA Repair》2004,3(8-9):1081-1090
Functional analysis of the XRCC genes continues to make an important contribution to the understanding of mammalian DNA double-strand break repair processes and mechanisms of genetic instability leading to cancer. New data implicate XRCC genes in long-standing questions, such as how homologous recombination (HR) intermediates are resolved and how DNA replication slows in the presence of damage (intra-S checkpoint). Examining the functions of XRCC genes involved in non-homologous end joining (NHEJ), paradoxical roles in repair fidelity and telomere maintenance have been found. Thus, XRCC5-7 (DNA-PK)-dependent NHEJ commonly occurs with fidelity, perhaps by aligning ends accurately in the absence of sequence microhomologies, but NHEJ-deficient mice show reduced frequencies of mutation. NHEJ activity seems to be involved in both mitigating and mediating telomere fusions; however, defective NHEJ can lead to telomere elongation, while loss of HR activity leads to telomere shortening. The correct functioning of XRCC genes involved in both HR and NHEJ is important for genetic stability, but loss of each pathway leads to different consequences, with defects in HR additionally leading to mitotic disruption and aneuploidy. Confirmation that these responses are likely to contribute to cancer induction and/or progression, is given by studies of humans and mice with XRCC gene disruptions: those affecting NHEJ show increased lymphoid tumours, while those affecting HR lead to breast cancer and perhaps to gynaecological tumours.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号