首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118846篇
  免费   8013篇
  国内免费   19篇
  126878篇
  2023年   650篇
  2022年   618篇
  2021年   1353篇
  2020年   1171篇
  2019年   1221篇
  2018年   2923篇
  2017年   2602篇
  2016年   3648篇
  2015年   5381篇
  2014年   5539篇
  2013年   7392篇
  2012年   8847篇
  2011年   8305篇
  2010年   5314篇
  2009年   3985篇
  2008年   6753篇
  2007年   6660篇
  2006年   6108篇
  2005年   5631篇
  2004年   5254篇
  2003年   4857篇
  2002年   4451篇
  2001年   2394篇
  2000年   2344篇
  1999年   2031篇
  1998年   858篇
  1997年   660篇
  1996年   591篇
  1995年   619篇
  1994年   619篇
  1993年   480篇
  1992年   1362篇
  1991年   1282篇
  1990年   1127篇
  1989年   1042篇
  1988年   979篇
  1987年   844篇
  1986年   767篇
  1985年   855篇
  1984年   744篇
  1983年   617篇
  1982年   484篇
  1981年   475篇
  1979年   619篇
  1978年   492篇
  1977年   435篇
  1976年   406篇
  1975年   474篇
  1974年   482篇
  1973年   484篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Autophagy is a major intracellular degeneration pathway involved in the elimination and recycling of damaged organelles and long-lived proteins by lysosomes. Many of the pathological factors, which trigger neurodegenerative diseases, can perturb the autophagy activity, which is associated with misfolded protein aggregates accumulation in these disorders. Alzheimer’s disease, the first neurodegenerative disorder between dementias, is characterized by two aggregating proteins, β-amyloid peptide (plaques) and τ-protein (tangles). In Alzheimer’s disease autophagosomes dynamically form along neurites within neuronal cells and in synapses but effective clearance of these structures needs retrograde transportation towards the neuronal soma where there is a major concentration of lysosomes. Maturation of autophago-lysosomes and their retrograde trafficking are perturbed in Alzheimer’s disease, which causes a massive concentration of autophagy elements along degenerating neurites. Transportation system is disturbed along defected microtubules in Alzheimer’s disease brains. τ-protein has been found to control the stability of microtubules, however, phosphorylation of τ-protein or an increase in the total level of τ-protein can cause dysfunction of neuronal cells microtubules. Current evidence has shown that autophagy is developing in Alzheimer’s disease brains because of ineffective degradation of autophagosomes, which hold amyloid precursor protein-rich organelles and secretases important for β-amyloid peptides generation from amyloid precursor. The combination of raised autophagy induction and abnormal clearance of β-amyloid peptide-generating autophagic vacuoles creates circumstances helpful for β-amyloid peptide aggregation and accumulation in Alzheimer’s disease. However, the key role of autophagy in Alzheimer’s disease development is still under consideration today. One point of view suggests that abnormal autophagy induction causes a concentration of autophagic vacuoles rich in amyloid precursor protein, β-amyloid peptide and the elements crucial for its formation, whereas other hypothesis points to marred autophagic clearance or even decrease in autophagic effectiveness playing a role in maturation of Alzheimer’s disease. In this review we present the recent evidence linking autophagy to Alzheimer’s disease and the role of autophagic regulation in the development of full-blown Alzheimer’s disease.  相似文献   
972.
The Urumaco stratigraphic sequence, western Venezuela, preserves a variety of paleoenvironments that include terrestrial, riverine, lacustrine and marine facies. A wide range of fossil vertebrates associated with these facies supports the hypothesis of an estuary in that geographic area connected with a hydrographic system that flowed from western Amazonia up to the Proto-Caribbean Sea during the Miocene. Here the elasmobranch assemblages of the middle Miocene to middle Pliocene section of the Urumaco sequence (Socorro, Urumaco and Codore formations) are described. Based on new findings, we document at least 21 taxa of the Lamniformes, Carcharhiniformes, Myliobatiformes and Rajiformes, and describe a new carcharhiniform species (†Carcharhinus caquetius sp. nov.). Moreover, the Urumaco Formation has a high number of well-preserved fossil Pristis rostra, for which we provide a detailed taxonomic revision, and referral in the context of the global Miocene record of Pristis as well as extant species. Using the habitat preference of the living representatives, we hypothesize that the fossil chondrichthyan assemblages from the Urumaco sequence are evidence for marine shallow waters and estuarine habitats.  相似文献   
973.
Paracoccidioidomycosis, a deep mycosis endemic in Latin America, is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Phagocytic cells play a critical role against this fungus, and several studies have shown the effects of activator and suppressive cytokines on macrophage and monocyte functions. However, studies on polymorphonuclear neutrophils (PMNs), that are the first cells recruited to the infection sites, are scarcer. Thus, the objective of this paper was to assess whether interleukin-10 (IL-10), a potent anti-inflammatory cytokine, is able to block the activity of IFN-gamma-activated human PMNs upon P. brasiliensis intracellular killing, in vitro. The results showed that IFN-gamma-activated PMNs have an effective fungicidal activity against the fungus. This activity was associated with the release of high levels of H(2)O(2), the metabolite involved in phagocytic cells antifungal activities. However, the concomitant incubation of these cells with IFN-gamma and IL-10 significantly blocked IFN-gamma activation. As a consequence, PMNs killing activity and H(2)O(2) release were inhibited. Together, our results show the importance of PMNs exposure to activator or suppressor cytokines in the early stages of paracoccidioidomycosis infection.  相似文献   
974.
The syntheses of poly-l-lactide (PLLA) and poly-l-lactide-co-glycolide (PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435). The highest PLLA yield (63%) was attained at 90 °C with a molecular weight (M n ) of 37.8 × 103 g/mol determined by size exclusion chromatography. This procedure produced relatively high crystalline polymers (up to 85% PLLA) as determined by DSC. In experiments at 90 °C product synthesis also occurred without biocatalyst, however, PLLA synthesis in [HMIM][PF6] at 65 °C followed only the enzymatic mechanism as ring opening was not observed without the enzyme. In addition, the enzymatic synthesis of PLLGA is first reported here using Novozyme 435 biocatalyst with up to 19% of lactyl units in the resulting copolymer as determined by NMR. Materials were also characterized by TGA, MALDI-TOF–MS, X-ray diffraction, polarimetry and rheology.  相似文献   
975.
Three and 8 week old pigs were inoculated with Cryptosporidium muris HZ206 (Mus musculus musculus isolate), Cryptosporidium tyzerri CR2090 (M. m. musculus isolate) or C. tyzzeri CR4293 (isolate from a hybrid between Mus musculus domesticus and M. m. musculus) at a dose of 1 × 10(7) oocysts per animal. Inoculated pigs showed no detectable infection and no clinical symptoms of cryptosporidiosis during 30 days post infection (DPI), and no macroscopic changes were detected in the digestive tract following necropsy. Developmental stages were not detected in gastrointestinal tract tissue by histology or PCR throughout the duration of the experiment. The infectivity of isolates was verified on SCID mice, in which oocysts shedding started from 4 to 8 DPI. Based on our findings, it can be concluded that pigs are not susceptible to C. muris or C. tyzzeri infection.  相似文献   
976.
In this work, the third derivative of the energy with respect to the number of electrons, the so-called hyper-hardness, is investigated to assess whether this quantity has a chemical meaning. To achieve this goal a new working expression for hyper-hardness is developed and analyzed. It transpired from this analysis that hyper-hardness, just like hardness, can measure the reactivity or the stability of electron systems. Interestingly, positive values of hyper-hardness point to quite stable species such as noble gases and molecules. On the other hand, radicals almost always display large negative values of hyper-hardness.  相似文献   
977.
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.  相似文献   
978.
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism''s physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.  相似文献   
979.
The product of the DKC1 gene, dyskerin, is required for both ribosome biogenesis and telomerase complex stabilization. Targeting these cellular processes has been explored for the development of drugs to selectively or preferentially kill cancer cells. Presently, intense research is conducted involving the identification of new biological targets whose modulation may simultaneously interfere with multiple cellular functions that are known to be hyper-activated by neoplastic transformations. Here, we report, for the first time, the computational identification of small molecules able to inhibit dyskerin catalytic activity. Different in silico techniques were applied to select compounds and analyze the binding modes and the interaction patterns of ligands in the human dyskerin catalytic site. We also describe a newly developed and optimized fast real-time PCR assay that was used to detect dyskerin pseudouridylation activity in vitro. The identification of new dyskerin inhibitors constitutes the first proof of principle that the pseudouridylation activity can be modulated by means of small molecule agents. Therefore, the presented results, obtained through the usage of computational tools and experimental validation, indicate an alternative therapeutic strategy to target ribosome biogenesis pathway.  相似文献   
980.
Under temperature sex determination (TSD), sex is determined by temperature during embryonic development. Depending on ecological and physiological traits and plasticity, TSD species may face demographic collapse due to climate change. In this context, asymmetry in bilateral organisms can be used as a proxy for developmental instability and, therefore, deviations from optimal incubation conditions. Using Tarentola mauritanica gecko as a model, this study aimed first to confirm TSD, its pattern and pivotal temperature, and second to assess the local adaptation of TSD and variation of asymmetry patterns across four populations under different thermal regimes. Eggs were incubated at different temperatures, and hatchlings were sexed and measured. The number of lamellae was counted in adults and hatchlings. Results were compatible with a TSD pattern with males generated at low and females at high incubation temperatures. Estimated pivotal temperature coincided with the temperature producing lower embryonic mortality, evidencing selection towards balanced sex ratios. The temperature of oviposition was conservatively selected by gravid females. Asymmetry patterns found were likely related to nest temperature fluctuations. Overall, the rigidity of TSD may compromise reproductive success, and demographic stability in this species in case thermal nest choice becomes constrained by climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号