首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1710篇
  免费   58篇
  2022年   5篇
  2021年   14篇
  2020年   5篇
  2019年   9篇
  2018年   14篇
  2017年   14篇
  2016年   18篇
  2015年   37篇
  2014年   61篇
  2013年   122篇
  2012年   82篇
  2011年   82篇
  2010年   56篇
  2009年   69篇
  2008年   111篇
  2007年   93篇
  2006年   122篇
  2005年   95篇
  2004年   101篇
  2003年   121篇
  2002年   135篇
  2001年   22篇
  2000年   18篇
  1999年   36篇
  1998年   35篇
  1997年   33篇
  1996年   14篇
  1995年   21篇
  1994年   30篇
  1993年   23篇
  1992年   16篇
  1991年   21篇
  1990年   12篇
  1989年   7篇
  1988年   9篇
  1987年   3篇
  1986年   10篇
  1985年   9篇
  1984年   14篇
  1983年   7篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1975年   5篇
  1974年   4篇
  1972年   5篇
  1971年   5篇
  1969年   4篇
排序方式: 共有1768条查询结果,搜索用时 312 毫秒
71.
The addition of substituents to the pyridopyrimidine scaffold of MexAB-OprM specific efflux pump inhibitors was explored. As predicted by a pharmacophore model, the incorporation substituents at the 2-position improved potency. Piperidines were found to be optimal, and further introduction of polar groups without compromising the activity was shown to be feasible. Careful positioning of the essential acidic moiety of the pharmacophore relative to the scaffold led to the discovery of vinyl tetrazoles with still greater potency.  相似文献   
72.
DNA microarrays with unmodified oligonucleotides are a cost-effective alternative to cDNA microarrays. This study examined how purity, length, homology and GC content of the oligonucleotide probes influence the sensitivity and specificity of the method using cyanobacterial genes. Oligonucleotide purification by high pressure liquid chromatography was omitted without significant reduction in hybridization sensitivity. For two of three genes tested, a reduction in oligonucleotide length did not reduce hybridization sensitivity, and maximum sensitivity was achieved with probes that were 45 nt long. Oligonucleotide probes with 相似文献   
73.
This paper reports chemical modification of silk sericin in LiCl/dimethyl sulfoxide (DMSO) solvent with 4-cyanophenyl isocyanate. Sericin is a highly hydrophilic protein secreted by Bombyx mori, serving as a protein glue in a cocoon. LiCl/DMSO was found to be a good solvent of sericin and useful for homogeneous modification of its abundant hydroxyl groups under nonaqueous condition. Fourier transform infrared (FTIR) analysis of the modified sericins revealed that 4-cyanophenyl groups were incorporated into sericin molecules mainly through urethane linkages. Several characteristics of the modified sericins such as solubility characteristic, hygroscopic property, and thermal stability were investigated. Secondary structure analysis using FTIR spectra suggested that formation of strong intermolecular hydrogen bonds was inhibited by the modification that is probably attributable to the incorporation of bulky 4-cyanophenyl groups. These results demonstrate that chemical modification of sericin using LiCl/DMSO solvent markedly alters its characteristics.  相似文献   
74.
The synergistic effects of 6-alk(en)ylsalcylic acids, also known as anacardic acids, in combination with methicillin against Staphylococcus aureus ATCC 33591 (MRSA) was investigated. The double bond in C15-anacardic acids is not essential in eliciting the antibacterial activity but is associated with increasing the activity. The synergistic effects decreased with increasing the number of double bonds in the alkyl chain. On the other hand, the antibacterial activity of anacardic acids possessing different alkyl chain lengths against the same MRSA strain was found to be a parabolic function of their lipophilicity and maximized with the alkyl chain length of C10 and C12. Notably, the synergistic effects were noted to increase with increasing the alkyl chain length.  相似文献   
75.
Structural modification of imiquimod (1), which is known as an interferon-alpha (IFN-alpha) inducer, for the aim of finding a novel and small-molecule tumor necrosis factor-alpha (TNF-alpha) suppressor and structure-activity relationship (SAR) are described. Structural modification of a imiquimod analogue, 4-amino-1-[2-(1-benzyl-4-piperidyl)ethyl-1H-imidazo[4,5-c]quinoline (2), which had moderate TNF-alpha suppressing activity without IFN-alpha inducing activity, led to a finding of 4-chloro-2-phenyl-1-[2-(4-piperidyl)ethyl]-1H-imidazo[4,5-c]quinoline (10) with potent TNF-alpha suppressing activity. The relation between conformational direction of 2-(4-piperidyl)ethyl group at position 1 and TNF-alpha suppressing activity is also demonstrated by NMR.  相似文献   
76.
In vivo post-ovulatory aging of oocytes significantly affects the development of oocytes and embryos. Also, oocyte aging alters the regulation of the intracellular calcium concentration, thus affecting Ca(2+) oscillations in fertilized oocytes. Because reactive oxygen species (ROS) are known to significantly perturb Ca(2+) homeostasis mainly through direct effects on the machinery involved in intracellular Ca(2+) storage, we hypothesized that the poor development of aged oocytes that may have been exposed to oxidative stress for a prolonged time might arise from impaired Ca(2+)-oscillation-dependent signaling. The fertilization rates of aged oocytes and of fresh oocytes treated with 100 microM hydrogen peroxide (H(2)O(2)) for 10 min were significantly lower than that of fresh oocytes. Comparing within the fertilized oocytes, blastocyst formation was decreased while embryo fragmentation was increased similarly in the aged and H(2)O(2)-treated fresh oocytes. The frequency of Ca(2+) oscillations was significantly increased whereas the amplitude of individual Ca(2+) transients was lowered in the aged and H(2)O(2)-treated fresh oocytes. The rates of rise and decline in individual Ca(2+) transients were decreased in these oocytes, indicating impaired Ca(2+) handling. When lipid peroxidation was assessed using 4,4-difluoro-5-(4-phenyl-1,3-buttadienyl)-4-bora-3a, 4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY) in unfertilized oocytes placed in a 5% CO(2) in air atmosphere, the green fluorescence (indicating lipid peroxidation) increased faster in the aged oocytes than in the fresh oocytes. Furthermore, the green fluorescence in the aged oocytes was already approximately 20 times higher than that in the fresh oocytes at the beginning of the measurements. These findings support the idea that Ca(2+) oscillations play a key role in the development of fertilized aged oocytes.  相似文献   
77.
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.  相似文献   
78.
Glycosylphosphatidylinositol (GPI) is a conserved post-translational modification to anchor cell surface proteins to plasma membrane in all eukaryotes. In yeast, GPI mediates cross-linking of cell wall mannoproteins to beta1,6-glucan. We reported previously that the GWT1 gene product is a target of the novel anti-fungal compound, 1-[4-butylbenzyl]isoquinoline, that inhibits cell wall localization of GPI-anchored mannoproteins in Saccharomyces cerevisiae (Tsukahara, K., Hata, K., Sagane, K., Watanabe, N., Kuromitsu, J., Kai, J., Tsuchiya, M., Ohba, F., Jigami, Y., Yoshimatsu, K., and Nagasu, T. (2003) Mol. Microbiol. 48, 1029-1042). In the present study, to analyze the function of the Gwt1 protein, we isolated temperature-sensitive gwt1 mutants. The gwt1 cells were normal in transport of invertase and carboxypeptidase Y but were delayed in transport of GPI-anchored protein, Gas1p, and were defective in its maturation from the endoplasmic reticulum to the Golgi. The incorporation of inositol into GPI-anchored proteins was reduced in gwt1 mutant, indicating involvement of GWT1 in GPI biosynthesis. We analyzed the early steps of GPI biosynthesis in vitro by using membranes prepared from gwt1 and Deltagwt1 cells. The synthetic activity of GlcN-(acyl)PI from GlcN-PI was defective in these cells, whereas Deltagwt1 cells harboring GWT1 gene restored the activity, indicating that GWT1 is required for acylation of inositol during the GPI synthetic pathway. We further cloned GWT1 homologues in other yeasts, Cryptococcus neoformans and Schizosaccharomyces pombe, and confirmed that the specificity of acyl-CoA in inositol acylation, as reported in studies of endogenous membranes (Franzot, S. P., and Doering, T. L. (1999) Biochem. J. 340, 25-32), is due to the properties of Gwt1p itself and not to other membrane components.  相似文献   
79.
80.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号