首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11887篇
  免费   967篇
  国内免费   11篇
  2023年   61篇
  2022年   114篇
  2021年   238篇
  2020年   107篇
  2019年   153篇
  2018年   214篇
  2017年   165篇
  2016年   291篇
  2015年   511篇
  2014年   596篇
  2013年   797篇
  2012年   893篇
  2011年   924篇
  2010年   577篇
  2009年   506篇
  2008年   777篇
  2007年   786篇
  2006年   709篇
  2005年   684篇
  2004年   680篇
  2003年   641篇
  2002年   569篇
  2001年   121篇
  2000年   87篇
  1999年   132篇
  1998年   173篇
  1997年   108篇
  1996年   89篇
  1995年   95篇
  1994年   103篇
  1993年   94篇
  1992年   80篇
  1991年   55篇
  1990年   61篇
  1989年   55篇
  1988年   56篇
  1987年   38篇
  1986年   34篇
  1985年   37篇
  1984年   47篇
  1983年   35篇
  1982年   35篇
  1981年   40篇
  1980年   45篇
  1979年   37篇
  1978年   23篇
  1977年   25篇
  1976年   20篇
  1974年   20篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Crump CM  Yates C  Minson T 《Journal of virology》2007,81(14):7380-7387
The assembly and egress of herpesviruses are complex processes that require the budding of viral nucleocapsids into the lumen of cytoplasmic compartments to form mature infectious virus. This envelopment stage shares many characteristics with the formation of luminal vesicles in multivesicular endosomes. Through expression of dominant-negative Vps4, an enzyme that is essential for the formation of luminal vesicles in multivesicular endosomes, we now show that Vps4 function is required for the cytoplasmic envelopment of herpes simplex virus type 1. This is the first example of a large enveloped DNA virus engaging the multivesicular endosome sorting machinery to enable infectious virus production.  相似文献   
942.
Before 2003, only occasional case reports of human H7 influenza virus infections occurred as a result of direct animal-to-human transmission or laboratory accidents; most of these infections resulted in conjunctivitis. An increase in isolation of avian influenza A H7 viruses from poultry outbreaks and humans has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. To better understand the pathogenesis of H7 viruses, we have investigated their ability to cause disease in mouse and ferret models. Mice were infected intranasally with H7 viruses of high and low pathogenicity isolated from The Netherlands in 2003 (Netherlands/03), the northeastern United States in 2002-2003, and Canada in 2004 and were monitored for morbidity, mortality, viral replication, and proinflammatory cytokine production in respiratory organs. All H7 viruses replicated efficiently in the respiratory tracts of mice, but only Netherlands/03 isolates replicated in systemic organs, including the brain. Only A/NL/219/03 (NL/219), an H7N7 virus isolated from a single fatal human case, was highly lethal for mice and caused severe disease in ferrets. Supporting the apparent ocular tropism observed in humans following infection with viruses of the H7 subtype, both Eurasian and North American lineage H7 viruses were detected in the mouse eye following ocular inoculation, whereas an H7N2 virus isolated from the human respiratory tract was not. Therefore, in general, the relative virulence and cell tropism of the H7 viruses in these animal models correlated with the observed virulence in humans.  相似文献   
943.
944.
Cell nuclei spin in the absence of lamin b1   总被引:5,自引:0,他引:5  
  相似文献   
945.
Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator, regulates lymphocyte trafficking, vascular permeability, and angiogenesis by activation of the S1P1 receptor. This receptor is activated by FTY720-P, a phosphorylated derivative of the immunosuppressant and vasoactive compound FTY720. However, in contrast to the natural ligand S1P, FTY720-P appears to act as a functional antagonist, even though the mechanisms involved are poorly understood. In this study, we investigated the fate of endogenously expressed S1P1 receptor in agonist-activated human umbilical vein endothelial cells and human embryonic kidney 293 cells expressing green fluorescent protein-tagged S1P1. We show that FTY720-P is more potent than S1P at inducing receptor degradation. Pretreatment with an antagonist of S1P1, VPC 44116, prevented receptor internalization and degradation. FTY720-P did not induce degradation of internalization-deficient S1P1 receptor mutants. Further, small interfering RNA-mediated down-regulation of G protein-coupled receptor kinase-2 and beta-arrestins abolished FTY720-P-induced S1P1 receptor degradation. These data suggest that agonist-induced phosphorylation of S1P1 and subsequent endocytosis are required for FTY720-P-induced degradation of the receptor. S1P1 degradation is blocked by MG132, a proteasomal inhibitor. Indeed, FTY720-P strongly induced polyubiquitinylation of S1P1 receptor, whereas S1P at concentrations that induced complete internalization was not as efficient, suggesting that receptor internalization is required but not sufficient for ubiquitinylation and degradation. We propose that the ability of FTY720-P to target the S1P1 receptor to the ubiquitinylation and proteasomal degradation pathway may at least in part underlie its immunosuppressive and anti-angiogenic properties.  相似文献   
946.
The AMP-activated protein kinase (AMPK) is a central regulator of the energy status of the cell, based on its unique ability to respond directly to fluctuations in the ratio of AMP:ATP. Because glucose and amino acids stimulate insulin release from pancreatic beta-cells by the regulation of metabolic intermediates, AMPK represents an attractive candidate for control of beta-cell function. Here, we show that inhibition of AMPK in beta-cells by high glucose inversely correlates with activation of the mammalian Target of Rapamycin (mTOR) pathway, another cellular sensor for nutritional conditions. Forced activation of AMPK by AICAR, phenformin, or oligomycin significantly blocked phosphorylation of p70S6K, a downstream target of mTOR, in response to the combination of glucose and amino acids. Amino acids also suppressed the activity of AMPK, and this at a minimum required the presence of leucine and glutamine. It is unlikely that the ability of AMPK to sense both glucose and amino acids plays a role in regulation of insulin secretion, as inhibition of AMPK by amino acids did not influence insulin secretion. Moreover, activation of AMPK by AICAR or phenformin did not antagonize glucose-stimulated insulin secretion, and insulin secretion was also unaffected in response to suppression of AMPK activity by expression of a dominant negative AMPK construct (K45R). Taken together, these results suggest that the inhibition of AMPK activity by glucose and amino acids might be an important component of the mechanism for nutrient-stimulated mTOR activity but not insulin secretion in the beta-cell.  相似文献   
947.
Carnitine palmitoyltransferase (CPT) 1A catalyzes the rate-limiting step in the transport of long chain acyl-CoAs from cytoplasm to the mitochondrial matrix by converting them to acylcarnitines. Located within the outer mitochondrial membrane, CPT1A activity is inhibited by malonyl-CoA, its allosteric inhibitor. In this study, we investigate for the first time the quaternary structure of rat CPT1A. Chemical cross-linking studies using intact mitochondria isolated from fed rat liver or from Saccharomyces cerevisiae expressing CPT1A show that CPT1A self-assembles into an oligomeric complex. Size exclusion chromatography experiments using solubilized mitochondrial extracts suggest that the fundamental unit of its quaternary structure is a trimer. When studied in blue native-PAGE, the CPT1A hexamer could be observed, however, suggesting that under these native conditions CPT1A trimers might be arranged as dimers. Moreover, the oligomeric state of CPT1A was found unchanged by starvation and by streptozotocin-induced diabetes, conditions characterized by changes in malonyl-CoA sensitivity of CPT1A. Finally, gel filtration analysis of several yeast-expressed chimeric CPTs demonstrates that the first 147 N-terminal residues of CPT1A, encompassing its two transmembrane segments, trigger trimerization independently of its catalytic C-terminal domain. Deletion of residues 1-82, including transmembrane 1, did not abrogate oligomerization, but the latter is limited to a trimer by the presence of the large catalytic C-terminal domain on the cytosolic face of mitochondria. Based on these findings, we proposed that the oligomeric structure of CPT1A would allow the newly formed acylcarnitines to gain direct access into the intermembrane space, hence facilitating substrate channeling.  相似文献   
948.
High-grade glioma cells express subunits of the ENaC/Deg superfamily, including members of ASIC subfamily. Our previous work has shown that glioma cells exhibit a basally active cation current, which is not present in low-grade tumor cells or normal astrocytes, and that can be blocked by amiloride. When ASIC2 is present within the channel complex in the plasma membrane, the channel is rendered non-functional because of inherent negative effectors that require ASIC2. We have previously shown that high-grade glioma cells functionally express this current because of the lack of ASIC2 in the plasma membrane. We now hypothesize that ASIC2 trafficking in glioma cells is regulated by a specific chaperone protein, namely Hsc70. Our results demonstrated that Hsc70 co-immunoprecipitates with ASIC2 and that it is overexpressed in glioma cells as compared with normal astrocytes. In contrast, there was no difference in the expression of calnexin, which also co-immunoprecipitates with ASIC2. In addition, glycerol and sodium 4-phenylbutyrate reduced the amount of Hsc70 expressed in glioma cells to levels found in normal astrocytes. Transfection of Hsc70 siRNA inhibited the constitutively activated amiloride-sensitive current, decreased migration, and increased ASIC2 surface expression in glioma cells. These results support an association between Hsc70 and ASIC2 that may underlie the increased retention of ASIC2 in the endoplasmic reticulum of glioma cells. The data also suggest that decreasing Hsc70 expression promotes reversion of a high-grade glioma cell to a more normal astrocytic phenotype.  相似文献   
949.
In spermatozoa, voltage-dependent calcium channels (VDCC) have been involved in different cellular functions like acrosome reaction (AR) and sperm motility. Multiple types of VDCC are present and their relative contribution is still a matter of debate. Based mostly on pharmacological studies, low-voltage-activated calcium channels (LVA-CC), responsible of the inward current in spermatocytes, were described as essential for AR in sperm. The development of Ca(V)3.1 or Ca(V)3.2 null mice provided the opportunity to evaluate the involvement of such LVA-CC in AR and sperm motility, independently of pharmacological tools. The inward current was fully abolished in spermatogenic cells from Ca(V)3.2 deficient mice. This current is thus only due to Ca(V)3.2 channels. We showed that Ca(V)3.2 channels were maintained in sperm by Western-blot and immunohistochemistry experiments. Calcium imaging experiments revealed that calcium influx in response to KCl was reduced in Ca(V)3.2 null sperm in comparison to control cells, demonstrating that Ca(V)3.2 channels were functional. On the other hand, no difference was noticed in calcium signaling induced by zona pellucida. Moreover, neither biochemical nor functional experiments, suggested the presence of Ca(V)3.1 channels in sperm. Despite the Ca(V)3.2 channels contribution in KCl-induced calcium influx, the reproduction parameters remained intact in Ca(V)3.2 deficient mice. These data demonstrate that in sperm, besides Ca(V)3.2 channels, other types of VDCC are activated during the voltage-dependent calcium influx of AR, these channels likely belonging to high-voltage activated Ca(2+) channels family. The conclusion is that voltage-dependent calcium influx during AR is due to the opening of redundant families of calcium channels.  相似文献   
950.
The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号