首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3460篇
  免费   189篇
  国内免费   2篇
  2022年   27篇
  2021年   42篇
  2020年   24篇
  2019年   31篇
  2018年   52篇
  2017年   47篇
  2016年   75篇
  2015年   129篇
  2014年   140篇
  2013年   233篇
  2012年   221篇
  2011年   222篇
  2010年   155篇
  2009年   122篇
  2008年   221篇
  2007年   211篇
  2006年   206篇
  2005年   215篇
  2004年   222篇
  2003年   209篇
  2002年   209篇
  2001年   52篇
  2000年   38篇
  1999年   53篇
  1998年   43篇
  1997年   30篇
  1996年   35篇
  1995年   19篇
  1994年   22篇
  1993年   24篇
  1992年   25篇
  1991年   20篇
  1990年   15篇
  1989年   13篇
  1988年   19篇
  1987年   10篇
  1986年   21篇
  1985年   17篇
  1984年   26篇
  1983年   15篇
  1982年   20篇
  1981年   13篇
  1980年   9篇
  1979年   13篇
  1978年   6篇
  1977年   13篇
  1975年   8篇
  1973年   10篇
  1972年   7篇
  1969年   7篇
排序方式: 共有3651条查询结果,搜索用时 15 毫秒
991.
An air puff stimulus to the cerci of a cricket (Gryllus bimaculatus) evokes flying when it is suspended in air, while the same stimulus evokes swimming when it is placed on the water surface. After bilateral dissection of the connectives between the suboesophageal and the prothoracic ganglia or between the brain and the suboesophageal ganglion, the air puff stimulus evokes flying even when the operated cricket is placed on the water surface. A touch stimulus on the body surface of crickets placed on the water surface elicits only flying when the connectives between suboesophageal and prothoracic ganglia are dissected, while the same stimulus elicits either swimming or flying when the connectives between the brain and the suboesophageal ganglion are dissected. These results suggest that certain neurons running through the ventral nerve cords between the brain and the suboesophageal ganglion or between the suboesophageal and the prothoracic ganglia play important but different roles in the initiation and/or switching of swimming and flying. In the suboesophageal ganglion, we physiologically and morphologically identified four types of "swimming initiating neurons". Depolarization of any one of these neurons resulted in synchronized activities of paired legs with a similar temporal sequence to that observed during swimming.  相似文献   
992.
MICAL, a novel CasL interacting molecule, associates with vimentin   总被引:1,自引:0,他引:1  
CasL/HEF1 belongs to the p130(Cas) family. It is tyrosine-phosphorylated following beta(1) integrin and/or T cell receptor stimulation and is thus considered to be important for immunological reactions. CasL has several structural motifs such as an SH3 domain and a substrate domain and interacts with many molecules through these motifs. To obtain more insights on the CasL-mediated signal transduction, we sought proteins that interact with the CasL SH3 domain by far Western screening, and we identified a novel human molecule, MICAL (a Molecule Interacting with CasL). MICAL is a protein of 118 kDa and is expressed in the thymus, lung, spleen, kidney, testis, and hematopoietic cells. MICAL has a calponin homology domain, a LIM domain, a putative leucine zipper motif, and a proline-rich PPKPP sequence. MICAL associates with CasL through this PPKPP sequence. MICAL is a cytoplasmic protein and colocalizes with CasL at the perinuclear area. Through the COOH-terminal region, MICAL also associates with vimentin that is a major component of intermediate filaments. Immunostaining revealed that MICAL localizes along with vimentin intermediate filaments. These results suggest that MICAL may be a cytoskeletal regulator that connects CasL to intermediate filaments.  相似文献   
993.
Stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1), a transmembrane-type protein-tyrosine phosphatase, is thought to inhibit integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. Adenovirus-mediated overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of this enzyme, has now been shown to induce apoptosis in NIH 3T3 fibroblasts. This effect of SAP-1 was dependent on cellular caspase activities and was preceded by inactivation of two serine-threonine protein kinases, Akt and integrin-linked kinase (ILK), both of which function downstream of phosphoinositide (PI) 3-kinase to promote cell survival. Coexpression of constitutively active forms of PI 3-kinase or Akt (which fully restored Akt and ILK activities) resulted in partial inhibition of SAP-1-induced cell death. Furthermore, expression of a dominant negative mutant of PI 3-kinase did not induce cell death as efficiently as did SAP-1, although this mutant inhibited Akt and ILK activities more effectively than did SAP-1. Overexpression of SAP-1 had no substantial effect on Ras activity. These results suggest that SAP-1 induces apoptotic cell death by at least two distinct mechanisms: inhibition of cell survival signaling mediated by PI 3-kinase, Akt, and ILK and activation of a caspase-dependent proapoptotic pathway.  相似文献   
994.
Ceramide-1-phosphate is a sphingolipid metabolite that has been implicated in membrane fusion of brain synaptic vesicles and neutrophil phagolysosome formation. Ceramide-1-phosphate can be produced by ATP-dependent ceramide kinase activity, although little is known of this enzyme because it has not yet been highly purified or cloned. Based on sequence homology to sphingosine kinase type 1, we have now cloned a related lipid kinase, human ceramide kinase (hCERK). hCERK encodes a protein of 537 amino acids that has a catalytic region with a high degree of similarity to the diacylglycerol kinase catalytic domain. hCERK also has a putative N-myristoylation site on its NH(2) terminus followed by a pleckstrin homology domain. Membrane but not cytosolic fractions from HEK293 cells transiently transfected with a hCERK expression vector readily phosphorylated ceramide but not sphingosine or other sphingoid bases, diacylglycerol or phosphatidylinositol. This activity was clearly distinguished from those of bacterial or human diacylglycerol kinases. With natural ceramide as a substrate, the enzyme had a pH optimum of 6.0-7.5 and showed Michaelis-Menten kinetics, with K(m) values of 187 and 32 microm for ceramide and ATP, respectively. Northern blot analysis revealed that hCERK mRNA expression was high in the brain, heart, skeletal muscle, kidney, and liver. A BLAST search analysis using the hCERK sequence revealed that putative ceramide kinases (CERKs) exist widely in diverse multicellular organisms including plants, nematodes, insects, and vertebrates. Phylogenetic analysis revealed that CERKs are a new class of lipid kinases that are clearly distinct from sphingosine and diacylglycerol kinases. Cloning of CERK should provide new molecular tools to investigate the physiological functions of ceramide-1-phosphate.  相似文献   
995.
During amphibian gastrulation, the anterior endomesoderm is thought to move forward along the inner surface of the blastocoel roof toward the animal pole where it comes into physical contact with the anterior-most portion of the prospective head neuroectoderm (PHN), and it is also believed that this physical interaction occurs during the mid-gastrula stage. However, using Xenopus embryos we found that the interaction between the anterior endomesoderm and the PHN occurs as early as stage 10.25 and the blastocoel roof ectoderm at this stage contributed only to the epidermal tissue. We also found that once the interaction was established, these tissues continued to associate in register and ultimately became the head structures. From these findings, we propose a new model of Xenopus gastrulation. The anterior endomesoderm migrates only a short distance on the inner surface of the blastocoel roof during very early stages of gastrulation (by stage 10.25). Then, axial mesoderm formation occurs, beginning dorsally (anterior) and progressing ventrally (posterior) to complete gastrulation. This new view of Xenopus gastrulation makes it possible to directly compare vertebrate gastrulation movements.  相似文献   
996.
The existence of multipotent cells in the adult tissues and organs of those vertebrates that are capable of regeneration has been accepted for decades. Although studies of vertebrate limb regeneration have yet to identify many of the specific molecules involved in regeneration, numerous tissue grafting experiments and studies of cell lineage have contributed significantly to an understanding of the origin, activation, proliferation and cell-cell interactions of these progenitor cells. This has allowed the development of ideas about the regulation of pattern formation to restore the structure and function of lost tissues and organs. An understanding of the molecular mechanisms controlling these processes has lagged behind the dramatic advances achieved with other model organisms. However, given the intense, new research interest in stem cells over the past few years, there is good reason to be encouraged that insights about the biology of mammalian stem cells will accelerate progress in understanding the biology of regeneration in organisms that can regenerate. Advances in regeneration research will then feed back in terms of devising new strategies for therapies to induce regeneration in organisms such as humans that have traditionally been viewed as incapable of regeneration.  相似文献   
997.
A virulent phage, named PP01, specific for Escherichia coli O157:H7 was isolated from swine stool sample. The phage concentration in a swine stool, estimated by plaque assay on E. coli O157:H7 EDL933, was 4.2x10(7) plaque-forming units per g sample. PP01 infects strains of E. coli O157:H7 but does not infect E. coli strains of other O-serogroups and K-12 strains. Infection of an E. coli O157:H7 culture with PP01 at a multiplicity of infection of two produced a drastic decrease of the optical density at 600 nm due to cell lysis. The further incubation of the culture for 7 h produced phage-resistant E. coli O157:H7 mutant. One PP01-resistant E. coli O157:H7 mutant had lost the major outer membrane protein OmpC. Complementation by ompC from a O157:H7 strain but not from a K-12 strain resulted in the restoration of PP01 susceptibility suggesting that the OmpC protein serves as the PP01 receptor. DNA sequences and homology analysis of two tail fiber genes, 37 and 38, responsible for the host cell recognition revealed that PP01 is a member of the T-even bacteriophages, especially the T2 family.  相似文献   
998.
Thirteen seco-prezizaane terpenoids isolated from star anise species (Illcium floridanum, Illcium parviflorum, and Illcium verum) were investigated for their ability to inhibit the specific binding of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist of gamma-aminobutyric acid (GABA) receptors, to housefly-head and rat-brain membranes. Veranisatin A was found to be the most potent inhibitor in both membranes, with an IC(50)(fly) of 78.5 nM and an IC(50)(rat) of 271 nM, followed by anisatin (IC(50)(fly)=123 nM; IC(50)(rat)=282 nM). Six of the other 11 tested compounds were effective only in housefly-head membranes. Pseudoanisatin proved to display a high (>26-fold) selectivity for housefly versus rat GABA receptors (IC(50)(fly)=376 nM; IC(50)(rat) >10,000 nM). Although pseudoanisatin does not structurally resemble EBOB, Scatchard plots indicated that the two compounds bind to the same site in housefly receptors. Anisatin and pseudoanisatin exhibited moderate insecticidal activity against German cockroaches. Comparative molecular field analysis (CoMFA), a method of three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis, demonstrated that seco-prezizaane terpenoids can bind to the same site as do picrotoxane terpenoids such as picrotoxinin and picrodendrins, and the CoMFA maps allowed us to identify the parts of the molecules essential to high activity in housefly GABA receptors.  相似文献   
999.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   
1000.
Acyl-CoA hydrolases cleave acyl-CoA thioesters to free fatty acids and coenzyme A. The potency of these enzymes may serve to modulate cellular levels of acyl-CoAs to affect various cellular functions, including lipid metabolism. In this study, we investigated the tissue distribution of this multigene family of enzymes, focusing on cytosolic (CTE-I) and mitochondrial acyl-CoA thioesterases (MTE-I) in adult rats, using an anti-CTE-I antibody which recognizes both the isoforms. Western blotting detected them mainly in organs closely related to fatty acid oxidation, of which kidney contained the highest levels of both enzymes. Immunohistochemistry localized the enzymes primarily in the proximal tubules, where a large energy demand is expected and fatty acids represent a major fuel, correlating well with the intrarenal distribution of peroxisomal beta-oxidation. In situ hybridization suggested colocalization of CTE-I and MTE-I in the kidney. The immunoreactivity was also found in various epithelial tissues in the body, including Harderian gland and sebaceous gland. These results demonstrated the distribution of CTE-I and MTE-I in a wide variety of rat tissues, primarily characterized by an epithelial localization, being consistent with their involvement in fatty acid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号