首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184篇
  免费   57篇
  2021年   13篇
  2020年   8篇
  2019年   8篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   37篇
  2014年   41篇
  2013年   46篇
  2012年   52篇
  2011年   53篇
  2010年   32篇
  2009年   32篇
  2008年   51篇
  2007年   65篇
  2006年   55篇
  2005年   49篇
  2004年   70篇
  2003年   56篇
  2002年   48篇
  2001年   40篇
  2000年   41篇
  1999年   26篇
  1998年   17篇
  1997年   13篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   13篇
  1992年   22篇
  1991年   18篇
  1990年   17篇
  1989年   17篇
  1988年   16篇
  1987年   12篇
  1986年   13篇
  1985年   8篇
  1983年   12篇
  1982年   8篇
  1981年   10篇
  1979年   11篇
  1978年   10篇
  1976年   9篇
  1975年   12篇
  1974年   12篇
  1973年   10篇
  1972年   9篇
  1971年   9篇
  1970年   15篇
  1968年   14篇
排序方式: 共有1241条查询结果,搜索用时 31 毫秒
151.
We previously showed that agonistic antibodies to CD40 could substitute for CD4 T-cell help and prevent reactivation of murine gammaherpesvirus 68 (MHV-68) in the lungs of major histocompatibility complex (MHC) class II−/− (CII−/−) mice, which are CD4 T cell deficient. Although CD8 T cells were required for this effect, no change in their activity was detected in vitro. A key question was whether anti-CD40 treatment (or CD4 T-cell help) changed the function of CD8 T cells or another cell type in vivo. To address this question, in the present study, we showed that adoptive transfer of CD8 T cells from virus-infected wild-type mice or anti-CD40-treated CII−/− mice caused a significant reduction in lung viral titers, in contrast to those from control CII−/− mice. Anti-CD40 treatment also greatly prolonged survival of infected CII−/− mice. This confirms that costimulatory signals cause a change in CD8 T cells enabling them to maintain effective long-term control of MHV-68. We investigated the nature of this change and found that expression of the inhibitory receptor PD-1 was significantly increased on CD8 T cells in the lungs of MHV-68-infected CII−/−, CD40−/−, or CD80/86−/− mice, compared with that in wild-type or CD28/CTLA4−/− mice, correlating with the level of viral reactivation. Furthermore, blocking PD-1-PD-L1 interactions significantly reduced viral reactivation in CD4 T-cell-deficient mice. In contrast, the absence of another inhibitory receptor, NKG2A, had no effect. These data suggest that CD4 T-cell help programs a change in CD8 T-cell function mediated by altered PD-1 expression, which enables effective long-term control of MHV-68.Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen which is closely related to Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV) (17, 64). Intranasal administration of MHV-68 to mice results in acute productive infection of lung epithelial cells and a latent infection in various cell types, including B lymphocytes, dendritic cells, epithelial cells, and macrophages (18, 19, 52, 53, 61, 65). The virus induces an inflammatory infiltrate in the lungs, lymph node enlargement, splenomegaly, and mononucleosis comprising increased numbers of activated CD8 T cells in the blood (53, 58). It has also been reported to induce lymphoproliferative disease/lymphoma in immunocompromised mice (30, 55, 60). Thus, the pathogenesis resembles that of EBV in humans, although structurally, the virus is more closely related to KSHV.Infectious MHV-68 is cleared from the lungs by a T-cell-dependent mechanism 10 to 15 days after infection (18, 53, 56). In wild-type mice, the lungs remain clear of replicating virus thereafter. Although CD4 T cells are not essential for primary clearance of replicating virus, they are required for effective long-term control (11). Thus, major histocompatibility complex (MHC) class II−/− mice that lack CD4 T cells or mice rendered CD4 deficient by antibody treatment initially clear infectious virus from the lungs. However, infectious virus reactivates in the lungs 10 to 15 days later and gradually increases in titer (11, 43). The infected CD4-deficient mice eventually die, apparently from long-term lung damage due to continuing lytic viral replication (11). MHC class II−/− mice do not produce antibody to T-dependent antigens (10). Cytotoxic T-lymphocyte (CTL) epitopes have been identified in open reading frame (ORF) 6 (p56, H-2Db-restricted), and ORF 61 (p79, H-2Kb-restricted) gene products, which appear to encode early lytic-phase proteins (32, 49). The epitopes are presented during two distinct phases during MHV-68 infection, which changes the pattern of CTL dominance (32, 51). However, there is no significant difference in the numbers of CD8 T cells specific for each epitope in wild-type mice and CD4 T-cell-deficient mice (4, 50). In addition, CTL activity measured in vitro does not differ substantially in the lungs of wild-type mice or CD4 T-cell-deficient mice (4, 11, 50). Furthermore, postexposure vaccination with the p56 epitope failed to prevent viral reactivation in class II−/− mice, despite dramatically expanding the number of CD8 T cells specific for the peptide (5). In contrast, vaccination of wild-type mice against these epitopes reduced lytic viral titers in the lung dramatically on subsequent challenge with MHV-68. B-cell-deficient mice clear MHV-68 with the kinetics of wild-type mice and do not show viral reactivation in the lungs (13, 61), suggesting that antibody is not essential for control of the virus. Depletion of CD4 T cells during the latent phase of infection in B-cell-deficient mice does not induce viral reactivation, whereas depletion of both CD4 and CD8 T-cell subsets provokes viral reactivation in the lungs (52). Short-term depletion of both CD4 and CD8 T-cell subsets during the latent phase of infection in wild-type mice does not lead to viral reactivation probably due to the presence of neutralizing antibody (11). Taken together, these results suggest that CD4 and CD8 T cells and B cells play overlapping roles in preventing or controlling reactivation of MHV-68 during the latent phase of infection. However, the B-cell- and CD8 T-cell-mediated control mechanisms do not develop in the absence of CD4 T cells.We, and others, have previously shown that the costimulatory molecule CD28 is not required for long-term control of MHV-68 (28, 29). However, interestingly, mice lacking both of the ligands for CD28, CD80 and CD86, show viral reactivation in the lung (21, 35). Our previously published data showed that agonistic antibodies to CD40 could substitute for CD4 T-cell function in the long-term control of MHV-68 (46). CD8 T-cell receptor-positive (TCR+) cells were required for this effect, while antibody production was not restored (45, 46). MHV-68-infected CD40L−/− mice (7) and CD40−/− mice (29) also showed viral reactivation in the lungs. However, no change in CD8 CTL activity was detected in in vitro assays following anti-CD40 treatment (46). A key question was whether anti-CD40 treatment (or CD4 T-cell help) caused a direct change in CD8 T-cell function or whether both CD8 T cells and an independent anti-CD40-sensitive step were required for viral control. To address this question, we used adoptive transfer of CD8 T cells from MHV-68-infected wild-type mice, anti-CD40-treated mice, or control MHC class II−/− mice to MHV-68-infected class II−/− recipients. We also investigated whether anti-CD40 treatment prolonged survival in addition to reducing lung viral titers. The heterodimeric molecule CD94/NKG2A has been implicated in negatively regulating the CD8 T-cell response to polyomavirus (38) and herpes simplex virus (HSV) (54), while the inhibitory receptor PD-1 (programmed death 1) has been implicated in T-cell exhaustion following infection with several other persistent viruses (2, 15, 20, 22, 26, 36, 39-41, 57, 67). In the present study, we investigated the effect of signaling via various costimulatory molecules on the expression of NKG2A and PD-1 and how these molecules influenced viral control.  相似文献   
152.
The immunologic effects of developmental exposure to noninherited maternal Ags (NIMAs) are quite variable. Both tolerizing influence and inducing alloreaction have been observed on clinical transplantation. The role of minor histocompatibility Ags (MiHAs) in NIMA effects is unknown. MiHA is either matched or mismatched in NIMA-mismatched transplantation because a donor of the transplantation is usually limited to a family member. To exclude the participation of MiHA in a NIMA effect for MHC (H-2) is clinically relevant because mismatched MiHA may induce severe alloreaction. The aim of this study is to understand the mechanism of NIMA effects in MHC-mismatched, MiHA-matched hematopoietic stem cell transplantation. Although all offsprings are exposed to the maternal Ags, the NIMA effect for the H-2 Ag was not evident. However, they exhibit two distinct reactivities, low and high responder, to NIMA in utero and during nursing depending on the degree of maternal microchimerism. Low responders survived longer with less graft-versus-host disease. These reactivities were correlated with Foxp3 expression of peripheral blood CD4(+)CD25(+) cells after graft-versus-host disease induction and the number of IFN-γ-producing cells stimulated with NIMA pretransplantation. These observations are clinically relevant and suggest that it is possible to predict the immunological tolerance to NIMA.  相似文献   
153.
In a previous study, we showed that (1′S)-acetoxychavicol acetate ((S)-ACA) caused a rapid decrease in glutathione (GSH) levels less than 15 min after exposure. (S)-ACA-induced cell death was reversed by the addition of N-acetylcysteine. In the current study, we investigated the inhibitory activities of 13 derivatives of (S)-ACA on tumor cell viability, intracellular GSH level and GR activity. Correlations were found among a decrease in cell viability, intracellular GSH levels and the activity of GR in Ehrlich ascites tumor cells treated with the various ACA analogues. A test of the 13 derivatives revealed that the structural factors regulating activity were as follows: (1) the para or 1′-position of acetoxyl group (or other acyl group) was essential, (2) the presence of a C2′–C3′ double or triple bond was essential, and (3) the S configuration of the 1′-acetoxyl group was preferable.  相似文献   
154.
Phosphoinositide 3-kinase (PI3K) has important functions in various biological systems, including immune response. Although the role of PI3K in signaling by antigen-specific receptors of the adaptive immune system has been extensively studied, less is known about the function of PI3K in innate immunity. In the present study, we demonstrate that macrophages deficient for PI3K (p85alpha regulatory subunit) are impaired in nitric oxide (NO) production upon lipopolysaccharide and interferon-gamma stimulation and thus vulnerable for intracellular bacterial infection such as Chlamydophila pneumoniae. Although expression of inducible nitric-oxide synthase (iNOS) is induced normally in PI3K-deficient macrophages, dimer formation of iNOS protein is significantly impaired. The amount of intracellular tetrahydrobiopterin, a critical stabilizing cofactor for iNOS dimerization, is decreased in the absence of PI3K. In addition, induction of GTP cyclohydrolase 1, a rate-limiting enzyme for biosynthesis of tetrahydrobiopterin, is greatly reduced. Our current results demonstrate a critical role of class IA type PI3K in the bactericidal activity of macrophages by regulating their NO production through GTP cyclohydrolase 1 induction.  相似文献   
155.
Heme (Fe-protoporphyrin IX), an endogenous porphyrin derivative, is an essential molecule in living aerobic organisms and plays a role in a variety of physiological processes such as oxygen transport, respiration, and signal transduction. For the biosynthesis of heme or the mitochondrial heme proteins, heme or its biosynthetic precursor porphyrin must be transported into mitochondria from cytosol. The mechanism of porphyrin accumulation in the mitochondrial inner membrane is unclear. In the present study, we analyzed the mechanism of mitochondrial translocation of porphyrin derivatives. We showed that palladium meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP), a phosphorescent porphyrin derivative, accumulated in the mitochondria of several cell lines. Using affinity latex beads, we showed that 2-oxoglutarate carrier (OGC), the mitochondrial transporter of 2-oxoglutarate, bound to PdTCPP, and in vitro PdTCPP inhibited 2-oxoglutarate uptake into mitochondria in a competitive manner (Ki = 15 microM). Interestingly, all types of porphyrin derivatives examined in this study competitively inhibited 2-oxoglutarate uptake into mitochondria, including protoporphyrin IX, coproporphyrin III, and hemin. Furthermore, mitochondrial accumulation of porphyrins was inhibited by 2-oxoglutarate or OGC inhibitor. These results suggested that porphyrin accumulation in mitochondria is mediated by OGC and that porphyrins are able to competitively inhibit 2-oxoglutarate uptake into mitochondria. This is the first report of a putative mechanism for accumulation of porphyrins in the mitochondrial inner membrane.  相似文献   
156.
Programmed death-1 (PD-1) is a negative costimulatory molecule, and blocking the interaction of PD-1 with its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), enhances autoimmune disease in several animal models. We have studied the role of PD-1 ligands in disease susceptibility and chronic progression in experimental autoimmune encephalomyelitis (EAE). In BALB/c mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, PD-L1 but not PD-L2 blockade significantly increased EAE incidence. In B10.S mice immunized with myelin proteolipid protein (PLP) peptide 139-151, both PD-L1 and PD-L2 blockade markedly enhanced EAE severity. In prediabetic NOD mice immunized with PLP48-70, PD-L2 blockade worsened EAE but did not induce diabetes, whereas PD-L1 blockade precipitated diabetes but did not worsen EAE, suggesting different regulatory roles of these two ligands in EAE and diabetes. B6 mice immunized with MOG35-55 developed chronic persistent EAE, and PD-L2 blockade in the chronic phase exacerbated EAE, whereas PD-L1 blockade did not. In contrast, SJL/J mice immunized with PLP139-151 developed chronic relapsing-remitting EAE, and only PD-L1 blockade during remission precipitated EAE relapse. The strain-specific effects of PD-1 ligand blockade did not correlate with the expression of PD-L1 and PD-L2 on dendritic cells and macrophages in lymphoid tissue, or on inflammatory cells in the CNS. However, EAE enhancement is correlated with less prominent Th2 cytokine induction after specific PD-1 ligand blockade. In conclusion, PD-L1 and PD-L2 differentially regulate the susceptibility and chronic progression of EAE in a strain-specific manner.  相似文献   
157.
158.
Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16(Ink4a) activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16(Ink4a)-mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16(Ink4a)-mediated senescence.  相似文献   
159.
160.
Bacterial attachments to nearly the entire surface of flagellated protists in the guts of termites and the wood-feeding cockroach Cryptocercus are often observed. Based on the polymerase chain reaction-amplified 16S rRNA gene sequences, we investigated the phylogenetic relationships of the rod-shaped, attached bacteria (ectosymbionts) of several protist species from five host taxa and confirmed their identity by fluorescence in situ hybridizations. These ectosymbionts are affiliated with the order Bacteroidales but formed three distinct lineages, each of which may represent novel bacterial genera. One lineage consisted of the closely related ectosymbionts of two species of the protist genus Devescovina (Cristamonadida). The second lineage comprised three phylotypes identified from the protist Streblomastix sp. (Oxymonadida). The third lineage included ectosymbionts of the three protist genera Hoplonympha, Barbulanympha and Urinympha in the family Hoplonymphidae (Trichonymphida). The ultrastructural observations indicated that these rod-shaped ectosymbionts share morphological similarities of their cell walls and their point of attachment with the protist but differ in shape. Elongated forms of the ectosymbionts appeared in all the three lineages. The protist cells Streblomastix sp. and Hoplonympha sp. display deep furrows and vane-like structures, but these impressive structures are probably evolutionarily convergent because both the host protists and their ectosymbionts are distantly related.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号