首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184篇
  免费   57篇
  2021年   13篇
  2020年   8篇
  2019年   8篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   37篇
  2014年   41篇
  2013年   46篇
  2012年   52篇
  2011年   53篇
  2010年   32篇
  2009年   32篇
  2008年   51篇
  2007年   65篇
  2006年   55篇
  2005年   49篇
  2004年   70篇
  2003年   56篇
  2002年   48篇
  2001年   40篇
  2000年   41篇
  1999年   26篇
  1998年   17篇
  1997年   13篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   13篇
  1992年   22篇
  1991年   18篇
  1990年   17篇
  1989年   17篇
  1988年   16篇
  1987年   12篇
  1986年   13篇
  1985年   8篇
  1983年   12篇
  1982年   8篇
  1981年   10篇
  1979年   11篇
  1978年   10篇
  1976年   9篇
  1975年   12篇
  1974年   12篇
  1973年   10篇
  1972年   9篇
  1971年   9篇
  1970年   15篇
  1968年   14篇
排序方式: 共有1241条查询结果,搜索用时 15 毫秒
121.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   
122.
123.
Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IkappaB kinase-dependent nuclear factor-kappaB activation pathway. H. pylori-mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori-associated gastric carcinogenesis.  相似文献   
124.
It is assumed that CD8(+) cytotoxic T lymphocytes (CTLs) mediate direct lysis of allografts and that their growth, differentiation, and activation are dependent upon cytokine production by CD4(+) helper T lymphocytes. In the present study, the effector cells responsible for the rejection of i.p. allografted, CTL-resistant Meth A tumor cells from C57BL/6 mice were characterized. The cytotoxic activity was associated exclusively with peritoneal exudate cells and not with the cells in lymphoid organs or blood. On day 8, when the cytotoxic activity reached a peak, 3 types of cells (i.e., lymphocytes, granulocytes, and macrophages) infiltrated into the rejection site; and allograft-induced macrophages (AIM) were cytotoxic against the allograft. Bacterially-elicited macrophages also exhibited cytotoxic activity (approximately 1/2 of that of AIM) against Meth A cells, whereas the cytotoxic activity of AIM against these cells but not that of bacterially-elicited macrophages was completely inhibited by the addition of donor (H-2(d))-type lymphoblasts, suggesting H-2(d)-specific cytotoxicity of AIM against Meth A cells. In contrast, resident macrophages were inactive toward Meth A cells. Morphologically, the three-dimensional appearance of AIM showed them to be unique large elongated cells having radiating peripheral filopodia and long cord-like extensions arising from their cytoplasmic surfaces. The ultrastructural examination of AIM revealed free ribosomes in their cytoplasm, which was often deformed by numerous large digestive vacuoles. These results indicate that AIM are the H-2(d)-specific effector cells for allografted Meth A cells and are a more fully activated macrophage with unique morphological features.  相似文献   
125.

Background  

Fishes in the families Cichlidae and Labridae provide good probable examples of vertebrate adaptive radiations. Their spectacular trophic radiations have been widely assumed to be due to structural key innovation in pharyngeal jaw apparatus (PJA), but this idea has never been tested based on a reliable phylogeny. For the first step of evaluating the hypothesis, we investigated the phylogenetic positions of the components of the suborder Labroidei (including Pomacentridae and Embiotocidae in addition to Cichlidae and Labridae) within the Percomorpha, the most diversified (> 15,000 spp) crown clade of teleosts. We examined those based on 78 whole mitochondrial genome sequences (including 12 newly determined sequences) through partitioned Bayesian analyses with concatenated sequences (13,933 bp).  相似文献   
126.
Gluconacetobacter xylinus (formerly Acetobacter xylinum and presently Komagataeibacter medellinensis) is known to produce cellulose as a stable pellicle. However, it is also well known to lose this ability very easily. We investigated the on and off mechanisms of cellulose producibility in two independent cellulose-producing strains, R1 and R2. Both these strains were isolated through a repetitive static culture of a non-cellulose-producing K. medellinensis NBRC 3288 parental strain. Two cellulose synthase operons, types I and II, of this strain are truncated by the frameshift mutation in the bcsBI gene and transposon insertion in the bcsCII gene, respectively. The draft genome sequencing of R1 and R2 strains revealed that in both strains the bcsBI gene was restored by deletion of a nucleotide in its C-rich region. This result suggests that the mutations in the bcsBI gene are responsible for the on and off mechanism of cellulose producibility. When we looked at the genomic DNA sequences of other Komagataeibacter species, several non-cellulose-producing strains were found to contain similar defects in the type I and/or type II cellulose synthase operons. Furthermore, the phylogenetic relationship among cellulose synthase genes conserved in other bacterial species was analyzed. We observed that the cellulose genes in the Komagataeibacter shared sequence similarities with the γ-proteobacterial species but not with the α-proteobacteria and that the type I and type II operons could be diverged from a same ancestor in Komagataeibacter.  相似文献   
127.
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens.  相似文献   
128.
In addition to its role in DNA repair, nuclear poly(ADP-ribose) polymerase-1 (PARP-1) mediates brain damage when it is over-activated by oxidative/nitrosative stress. Nonetheless, it remains unclear how PARP-1 is activated in neuropathological contexts. Here we report that PARP-1 interacts with a pool of glyceradehyde-3-phosphate dehydrogenase (GAPDH) that translocates into the nucleus under oxidative/nitrosative stress both in vitro and in vivo. A well conserved amino acid at the N terminus of GAPDH determines its protein binding with PARP-1. Wild-type (WT) but not mutant GAPDH, that lacks the ability to bind PARP-1, can promote PARP-1 activation. Importantly, disrupting this interaction significantly diminishes PARP-1 overactivation and protects against both brain damage and neurological deficits induced by middle cerebral artery occlusion/reperfusion in a rat stroke model. Together, these findings suggest that nuclear GAPDH is a key regulator of PARP-1 activity, and its signaling underlies the pathology of oxidative/nitrosative stress-induced brain damage including stroke.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号