首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2087篇
  免费   124篇
  2211篇
  2022年   6篇
  2021年   13篇
  2020年   6篇
  2019年   16篇
  2018年   28篇
  2017年   28篇
  2016年   33篇
  2015年   55篇
  2014年   65篇
  2013年   183篇
  2012年   120篇
  2011年   132篇
  2010年   71篇
  2009年   71篇
  2008年   104篇
  2007年   131篇
  2006年   111篇
  2005年   100篇
  2004年   116篇
  2003年   116篇
  2002年   122篇
  2001年   26篇
  2000年   25篇
  1999年   36篇
  1998年   31篇
  1997年   28篇
  1996年   17篇
  1995年   21篇
  1994年   17篇
  1993年   26篇
  1992年   33篇
  1991年   21篇
  1990年   21篇
  1989年   29篇
  1988年   17篇
  1987年   11篇
  1986年   20篇
  1985年   18篇
  1984年   29篇
  1983年   14篇
  1982年   8篇
  1981年   18篇
  1980年   22篇
  1979年   13篇
  1978年   9篇
  1977年   14篇
  1976年   13篇
  1975年   11篇
  1974年   7篇
  1973年   9篇
排序方式: 共有2211条查询结果,搜索用时 19 毫秒
91.
Molecular characters may offer a useful alternative to confidently estimate the phylogenetic position of paedomorphic taxa otherwise difficult to place based on morphology because of the reduction or absence of characters in their larvae-like adult stage. Here, we sequenced the complete mitogenome of a remarkable undescribed marine paedomorphic clupeiform fish to gain insight into its phylogenetic position. Of a length of 17,507 bp, this mitogenome exhibits a unique gene order within the Teleostei because of the inversion of the contiguous tRNAGln and tRNAIle within the IQM region and the presence of a putative second control region inserted between these tRNAs. Mitogenomic data from 27 clupeiform species and 22 non-clupeiform species were subjected to partitioned maximum likelihood and Bayesian analyses. All resultant phylogenetic trees strongly supported the placement of this undescribed taxon within the order Clupeiformes, suborder Clupeoidei, and the family Clupeidae, as the sister group of the tribe Spratelloidini (Jenkinsia Spratelloides) of the subfamily Dussumieriinae. Together, they form a monophyletic group with Chirocentrus and, possibly, Etrumeus. Despite its overall resemblance to Sundasalanx, this undescribed taxa (Clupeidae gen. et sp. indet.) is not closely related to that genus and represents an independent paedomorphic lineage within the Clupeoidei. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
92.
93.
94.
We have previously shown that a coenzyme-B12 analog, adenosylcobalamin (AdoCbl)-(e-OH), with the e-propionamide group converted to a carboxylic acid, serves as a poor coenzyme for dioldehydrase. During the course of the catalytic process, the enzyme AdoCbl-(e-OH) complex becomes catalytically inactive (T. Toraya, E. Krodel, A. S. Mildvan, and R. H. Abeles, 1979, Biochemistry18, 417–426). We have now examined the mechanism of this inactivation further. Inactivation only occurs in the presence of substrate. The dioldehydrase coenzyme analog complex is stable in the absence of substrate. In the inactivated complex, the coenzyme analog was stoichiometrically converted to a cob(II)alamin species. The cob-(II)alamin formed remained irreversibly bound at the active site of the enzyme and resisted oxidation by O2 even in the presence of CN?. Stoichiometric formation of 5′-deoxyadenosine from the 5′-deoxy-5′-adenosyl moiety of the coenzyme analog was demonstrated with [8-14C]-AdoCbl(e-OH). This nucleoside also remained tightly bound to the enzyme and was not exchangeable with free 5′-deoxyadenosine nor was it removed by Sephadex chromatography. The rate of inactivation showed no deuterium isotope effect when the inactivation occurred in the presence of l,2-propanediol-l-d2. The inactivated complex was resolved by acid ammonium sulfate treatment into the intact apoenzyme and the hydroxocobalamin derivative. This indicates that the apoenzyme itself is not modified in the inactivation process. These results suggest that the inactivation reaction occurs from one of the intermediates in the normal catalysis. We propose that the inactivation is due to incorrect binding of the modified coenzyme in an intermediate of the catalytic process. This incorrect binding leads to the loss of the substrate radical, and consequently, to loss of catalytic activity.  相似文献   
95.
Plant Transcription Factors   总被引:13,自引:0,他引:13  
  相似文献   
96.
The apoenzyme of diol dehydrase was inactivated by four sulfhydryl-modifying reagents, p-chloromercuribenzoate, 5,5′-dithiobis(2-nitrobenzoate) (DTNB), iodoacetamide, and N-ethylmaleimide. In each case pseudo-first-order kinetics was observed. p-Chloromercuribenzoate modified two sulfhydryl groups per enzyme molecule and modification of the first one resulted in complete inactivation of the enzyme. DTNB also modified two sulfhydryl groups, but modification of the second one essentially corresponded to the inactivation. In both cases, the inactivation was reversed by incubation with dithiothreitol. Cyanocobalamin, a potent competitive inhibitor of adenosylcobalamin, protected the essential residue, but not the nonessential one, against the modification by these reagents. By resolving the sulfhydryl-modified cyanocobalamin-enzyme complex, the enzyme activity was recovered, irrespective of treatment with dithiothreitol. From these results, we can conclude that diol dehydrase has two reactive sulfhydryl groups, one of which is essential for catalytic activity and located at or in close proximity to the coenzyme binding site. The other is nonessential for activity. Neitherp-chloromercuribenzoate- nor DTNB-modified apoenzyme was able to bind cyanocobalamin, whereas the iodoacetamide- and N-ethylmaleimide-modified apoenzyme only partially lost the ability to bind cyanocobalamin. The inactivation of diol dehydrase by p-chloromercuribenzoate and DTNB did not bring about dissociation of the enzyme into subunits. Total number of the sulfhydryl groups of this enzyme was 14 when determined in the presence of 6 m guanidine hydrochloride. No disulfide bond was detected.  相似文献   
97.
Minipigs have been studied as a model of osteoporosis. However, little information is available regarding their bone physiology. We established standardized bone data and investigated the relationship between bone growth and bone metabolism in female minipigs. Blood and urine samples were obtained from 53 female G?ttingen minipigs, 3-76 months of age, for measurement of bone biomarkers (i.e., BAP, OC, NTX, and DPD). The lumbar vertebra and femur were excised to determine the growth plate condition, bone length, bone mineral content (BMC), and bone mineral density (BMD). High levels of bone biomarkers were observed during the initial period after birth, decreasing thereafter with age. Bone biomarkers were confirmed to be highly correlated with age (R(2) > 0.7). The growth plates of the lumbar vertebra and the femur began to close at 21 and 25 months of age, respectively, and closed completely at 42 months of age. Bone length increased rapidly before growth plate closure, and reached a peak at 21 and 28 months of age in the lumbar vertebra and the femur, respectively. The levels of BMC and BMD increased rapidly before growth plate closure, and continued to increase slowly until 76 months of age. A high negative correlation (-0.855 < r < -0.711, p<0.001) was confirmed between the bone biomarkers and the bone measurement data. These results indicate that the bone turnover velocity is consistent with the bone growth velocity in female G?ttingen minipigs.  相似文献   
98.
99.
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway.  相似文献   
100.
The eyes are riched in long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid [ARA; 20:4 (n−6)] and docosahexaenoic acid [DHA; 22:6 (n−3)]. Despite their abundance in the eyes, ARA and DHA cannot be sufficiently synthesized de novo in mammals. During gestation, eye development is exceptionally rapid, and substantial amounts of LC-PUFAs are needed to ensure proper eye development. Here, we studied the influences of dietary LC-PUFAs in dams (C57BL/6 and C3H/He) on the eye morphogenesis and organogenesis of their pups. Intriguingly, fetuses and newborn mice from C57BL/6 dams fed an LC-PUFA (particularly ARA)-enriched diet displayed a much higher incidence of eye abnormalities such as microphthalmia (small eye) and corneal opacity than those from dams fed an LC-PUFA-poor diet. The effects of LC-PUFAs on eye anomalies were evident only in the female pups of C57BL/6 inbred mice, not in those of C3H/He mice or male C57BL/6 mice. These results demonstrate a gene-by-environment (GxE) interaction in eye development in mice. Furthermore, our molecular analysis suggested the potential roles of Pitx3 and Pax6 in the above interaction involving ARA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号