首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   16篇
  国内免费   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   6篇
  2007年   9篇
  2006年   16篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   10篇
  2001年   13篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1973年   3篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
61.
Ribulose-l,5-bisphosphate carboxylase (E.C. 4.1.1.39) isolated from Chromatium strain D contains 64 free cysteinyl -SH groups per mol (Mr 5.11 × 105) as determined using three different titrants: p-[14C]chloromercuribenzoate, the Ellman reagent, and [14C]iodoacetamide.Distribution of -SH groups in the two constituent subunits (A and B) isolated from spinach and Chromatium ribulose-1,5-bisphosphate carboxylases was determined to be for spinach, 9 in A and 3 in B; and for Chromatium, 7 in A and 1 in B.The relationship between the numbers of -SH groups blocked vs residual activities of both the ribulose-1,5-bisphosphate carboxylase and oxygenase reactions was examined by titration with p-chloromercuribenzoate. In both spinach and Chromatium enzymes, antisigmoidal curves were obtained for the degree of the enzyme activity loss in relation to the numbers of -SH groups masked. However, at alkaline pH the Chromatium enzyme shows a sharp decline in both carboxylase and oxygenase activities, apparently due to the alkali dissociation of the enzyme molecule accompanied by its structural deformation. The functional role of -SH groups in the ribulose-1,5-bisphosphate carboxylase molecule is discussed in relation to two constituent enzyme reactions, and it is concluded that in both enzyme sources the active sites are probably the same for the two reactions.  相似文献   
62.
Upon alkali exposure Chromatium ribulose-1,5-bisphosphate carboxylase dissociates into constituent subunits, a catalytic oligomer of the larger subunit, A8, and monomeric form of the small subunit B. By sedimentation equilibrium molecular weights of the native enzyme and the catalytic oligomer produced by an alkali treatment were estimated to be 5.11 x 10 5 and 4.29 x 10 5, respectively. To provide information on reversibility of the dissociation by determining whether the enzymically inactive small subunit B of the whole enzyme molecule did indeed exchange with exogenously added subunit B a radioisotopic method was used. After initial alkaline dialysis at pH 9.2 of a mixture of a nonlabeled native enzyme preparation and 14C-labeled subunit B, and the subsequent dialysis at pH 7.0, incorporation of 14C into the recovered native enzyme was determined. Without the alkaline treatment there was no detectable exchange, while after alkaline dialysis for 5 and 10 hr the subunit B exchange was 89 and 82%, respectively. Rabbit antiserum prepared against the catalytic oligomer of the spinach ribulose-1,5-bisphosphate carboxylase, anti-(A) (spinach), inhibited the Chromatium carboxylase and oxygenase activities. This result together with the identical immunoprecipitation lines on an agar plate formed between the antiserum and the Chromatium carboxylase and between the antiserum and the catalytic subunit of the Chromatium enzyme strongly indicated structural near identity of the catalytic subunits of the spinach and Chromatium carboxylase molecules. Results also show that the catalytic site of the Chromatium ribulose-1,5-bisphosphate carboxylase and oxygenase exists in the large polypeptide chain.  相似文献   
63.
The effects of cytochalasin B, N-ethylmaleimide (NEM), colchicine,vinblastine and cycloheximide on the formation of birefringentcell wall layers were studied. Birefringent layers accumulatedoutside the plasma membrane of daughter semicells when cellswere cultured in a 0.16 M mannitol solution without any inhibitors.In cells treated with 2 x 10–5 M cytochalasin B, 3 x 10–5M NEM, 10–4 M vinblastine or 10–5 M cycloheximidefor 24 hr, birefringent layers were not observed outside theplasma membrane, but were present in cells treated with 10–2M colchicine. The possibility is discussed that substances necessaryfor wall synthesis could be transported from the cytoplasm tothe outside of the plasma membrane by a system associated withmicrofilaments, microtubules and myosin-like structures. (Received June 26, 1981; Accepted September 24, 1981)  相似文献   
64.
65.
The red colored product, which was identified as a chlorpromazine (CPZ) free radical, was observed in the reaction of CPZ with the vanadate ion (+5 oxidation state). The product and the mechanism for the reaction were characterized from optical and EPR spectrometries. Optimal conditions for generation of the free radical were determined as reaction time within one minute of pH 6 and free radical stabilizing time of 30 minutes by acidifying with HCl. Under these conditions, the stoichiometry for the reaction was found to be 1:1, indicating the involvement of one electron transfer from CPZ to the vanadate ion to form the free radical and vanadyl ion (+4 oxidation state). A possible reaction scheme was proposed:
The implications of this reaction were discussed with regard to the pharmacological action of the vanadate ion and CPZ.  相似文献   
66.
67.
T. Awano  K. Takabe  M. Fujita 《Protoplasma》1998,202(3-4):213-222
Summary An antiserum against glucuronoxylans (GXs) has been raised from a mouse. The dot-blot immunoassay and competitive inhibition test indicated that the antibodies could bind specifically to GXs. Therefore, the antiserum was used for immunogold labelling to investigate the localization of GXs in Japanese beech. Labelling of GXs was seen only in the secondary walls of xylem cells, but not in the primary walls or the middle lamella. GXs were evenly distributed in the secondary walls except for the outer part of the outer secondary-wall layer in which they were less abundant. The labelling density in each secondary-wall layer (S1, S2, and S3) increased during cell wall formation. This result strongly suggests that the deposition of GXs occurs in a penetrative way.  相似文献   
68.
69.
70.
Beta-glucuronidase is a lysosomal enzyme that plays an essential role in normal turnover of glycosaminoglycans and remodeling of the extracellular matrix components in both physiological and inflammatory states. The regulation mechanisms of enzyme activity and protein targeting of beta-glucuronidase have implications for the development of a variety of therapeutics. In this study, the effectiveness of various carbohydrate-immobilized adsorbents for the isolation of bovine liver beta-glucuronidase (BLG) from other glycosidases was tested. Beta-glucuronidase and contaminating glycosidases in commercial BLG preparations bound to and were coeluted from adsorbents immobilized with the substrate or an inhibitor of beta-glucuronidase, whereas beta-glucuronidase was found to bind exclusively with lactamyl-Sepharose among the adsorbents tested and to be effectively separated from other enzymes. Binding and elution studies demonstrated that the interaction of beta-glucuronidase with lactamyl-Sepharose is pH dependent and carbohydrate specific. BLG was purified to homogeneity by lactamyl affinity chromatography and subsequent anion-exchange high-performance liquid chromatography (HPLC). Lactose was found to activate beta-glucuronidase noncompetitively, indicating that the lactose-binding site is different from the substrate-binding site. Binding studies with biotinyl glycoproteins, lipids, and synthetic sugar probes revealed that beta-glucuronidase binds to N-acetyllactosamine/lactose-containing glycoconjugates at neutral pH. The results indicated the presence of N-acetyllactosamine/lactose-binding activity in BLG and provided an effective purification method utilizing the novel carbohydrate binding activity. The biological significance of the carbohydrate-specific interaction of beta-glucuronidase, which is different from the substrate recognition, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号