首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   56篇
  国内免费   42篇
  807篇
  2024年   4篇
  2023年   15篇
  2022年   22篇
  2021年   47篇
  2020年   26篇
  2019年   24篇
  2018年   41篇
  2017年   26篇
  2016年   30篇
  2015年   39篇
  2014年   53篇
  2013年   56篇
  2012年   75篇
  2011年   58篇
  2010年   39篇
  2009年   31篇
  2008年   26篇
  2007年   26篇
  2006年   21篇
  2005年   20篇
  2004年   16篇
  2003年   17篇
  2002年   21篇
  2001年   13篇
  2000年   12篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1982年   2篇
  1981年   3篇
  1977年   2篇
  1976年   2篇
  1971年   1篇
  1970年   1篇
  1950年   1篇
排序方式: 共有807条查询结果,搜索用时 15 毫秒
11.
12.
13.
We investigated the interaction of 2,4,6-triiodophenol (TIP), a potent thyroid hormone disrupting chemical, with serum proteins from rainbow trout (Onchorhynchus mykiss), bullfrog (Rana catesbeiana), chicken (Gallus gallus), pig (Sus scrofa domesticus), and rat (Rattus norvegicus) using a [(125)I]TIP binding assay, gel filtration chromatography, and native polyacrylamide gel electrophoresis. [(125)I]TIP bound non-specifically to proteins in trout serum, specifically but weakly to proteins in bullfrog serum, and specifically and strongly to proteins in chicken, pig, and rat serum samples. Candidate TIP-binding proteins included lipoproteins (220-320kDa) in trout, albumin in bullfrog, albumin and transthyretin (TTR) in chicken and pig, and TTR in rat. TTR in the chicken, pig, and rat serum samples was responsible for the high-affinity, low-capacity binding sites for TIP (dissociation constant 2.2-3.5×10(-10)M). In contrast, a weak interaction of [(125)I]TIP with tadpole serum proteins accelerated [(125)I]TIP cellular uptake in vitro. Intraperitoneal injection of [(125)I]TIP in tadpoles revealed that the radioactivity was predominantly accumulated in the gallbladder and the kidney. The differences in the molecular and binding properties of TIP binding proteins among vertebrates would affect in part the cellular availability, tissue distribution and clearance of TIP.  相似文献   
14.
X-ray reflectivity measurements are used to determine the configuration of the C2 domain of protein kinase Cα (PKCα-C2) bound to a lipid monolayer of a 7:3 mixture of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine supported on a buffered aqueous solution. The reflectivity is analyzed in terms of the known crystallographic structure of PKCα-C2 and a slab model representation of the lipid layer. The configuration of lipid-bound PKCα-C2 is described by two angles that define its orientation, θ = 35° ± 10° and φ =210° ± 30°, and a penetration depth (=7.5 ± 2 Å) into the lipid layer. In this structure, the β-sheets of PKCα-C2 are nearly perpendicular to the lipid layer and the domain penetrates into the headgroup region of the lipid layer, but not into the tailgroup region. This configuration of PKCα-C2 determined by our x-ray reflectivity is consistent with many previous findings, particularly mutational studies, and also provides what we believe is new molecular insight into the mechanism of PKCα enzyme activation. Our analysis method, which allows us to test all possible protein orientations, shows that our data cannot be explained by a protein that is orientated parallel to the membrane, as suggested by earlier work.  相似文献   
15.
In Vitro Cellular & Developmental Biology - Plant - To improve the genetic transformation system for Brassica rapa L., we established a high-efficiency shoot regeneration protocol. A double...  相似文献   
16.
Polymer bulk heterojunction solar cells based on low bandgap polymer:fullerene blends are promising for next generation low‐cost photovoltaics. While these solution‐processed solar cells are compatible with large‐scale roll‐to‐roll processing, active layers used for typical laboratory‐scale devices are too thin to ensure high manufacturing yields. Furthermore, due to the limited light absorption and optical interference within the thin active layer, the external quantum efficiencies (EQEs) of bulk heterojunction polymer solar cells are severely limited. In order to produce polymer solar cells with high yields, efficient solar cells with a thick active layer must be demonstrated. In this work, the performance of thick‐film solar cells employing the low‐bandgap polymer poly(dithienogermole‐thienopyrrolodione) (PDTG‐TPD) was demonstrated. Power conversion efficiencies over 8.0% were obtained for devices with an active layer thickness of 200 nm, illustrating the potential of this polymer for large‐scale manufacturing. Although an average EQE > 65% was obtained for devices with active layer thicknesses > 200 nm, the cell performance could not be maintained due to a reduction in fill factor. By comparing our results for PDTG‐TPD solar cells with similar P3HT‐based devices, we investigated the loss mechanisms associated with the limited device performance observed for thick‐film low‐bandgap polymer solar cells.  相似文献   
17.
Escherichia coli Exonuclease I (ExoI) digests single-stranded DNA (ssDNA) in the 3′-5′ direction in a highly processive manner. The crystal structure of ExoI, determined previously in the absence of DNA, revealed a C-shaped molecule with three domains that form a central positively charged groove. The active site is at the bottom of the groove, while an extended loop, proposed to encircle the DNA, crosses over the groove. Here, we present crystal structures of ExoI in complex with four different ssDNA substrates. The structures all have the ssDNA bound in essentially the predicted manner, with the 3′-end in the active site and the downstream end under the crossover loop. The central nucleotides of the DNA form a prominent bulge that contacts the SH3-like domain, while the nucleotides at the downstream end of the DNA form extensive interactions with an ‘anchor’ site. Seven of the complexes are similar to one another, but one has the ssDNA bound in a distinct conformation. The highest-resolution structure, determined at 1.95 Å, reveals an Mg2+ ion bound to the scissile phosphate in a position corresponding to MgB in related two-metal nucleases. The structures provide new insights into the mechanism of processive digestion that will be discussed.  相似文献   
18.
Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted.  相似文献   
19.
RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3 × 3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure–activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif–aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.  相似文献   
20.
A novel group of 1,4-diaryl-substituted triazoles was designed and synthesized by introducing the cyclooxygenase-2 (COX-2) pharmacophore SO2NH2 attached to one aryl ring and various substituents (H, F, Cl, CH3 or OCH3) attached to the other aryl ring. The effects of size and flexibility of the compounds upon COX-1/COX-2 inhibitory potency and selectivity was studied by increasing the size of an alkyl linker chain [(–CH2)n, where n = 0, 1, 2]. In vitro COX-1/COX-2 inhibition studies showed that all compounds (1418, 2125 and 2832) are more potent inhibitors of COX-2 isozyme (IC50 = 0.17–28.0 μM range) compared to COX-1 isozyme (IC50 = 21.0 to >100 μM range). Within the group of 1,4 diaryl-substituted triazoles, 4-{2-[4-(4-chloro-phenyl)-[1,2,3]triazol-1-yl]-ethyl}-benzenesulfonamide (compound 30) displayed highest COX-2 inhibitory potency and selectivity (COX-1: IC50 = >100 μM, COX-2: IC50 = 0.17 μM, SI >588). Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure–activity relationship data. Results of molecular docking studies revealed that COX-2 pharmacophore SO2NH2 in compound 30 is positioned in the secondary pocket of COX-2 active site; with the nitrogen atom of the SO2NH2 group being hydrogen bonded to Q192 (N?OC = 2.85 Å), and one of the oxygen atoms of SO2NH2 group forming a hydrogen bond to H90 (SO?N = 2.38 Å).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号