首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1683篇
  免费   99篇
  1782篇
  2022年   9篇
  2021年   15篇
  2020年   10篇
  2019年   8篇
  2018年   13篇
  2017年   10篇
  2016年   20篇
  2015年   33篇
  2014年   63篇
  2013年   62篇
  2012年   81篇
  2011年   93篇
  2010年   48篇
  2009年   48篇
  2008年   93篇
  2007年   105篇
  2006年   102篇
  2005年   88篇
  2004年   104篇
  2003年   86篇
  2002年   89篇
  2001年   50篇
  2000年   44篇
  1999年   50篇
  1998年   23篇
  1997年   32篇
  1996年   24篇
  1995年   28篇
  1994年   27篇
  1993年   12篇
  1992年   37篇
  1991年   34篇
  1990年   16篇
  1989年   22篇
  1988年   19篇
  1987年   19篇
  1986年   18篇
  1985年   21篇
  1984年   16篇
  1983年   11篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1941年   4篇
  1933年   4篇
排序方式: 共有1782条查询结果,搜索用时 0 毫秒
971.
Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage induced by H(2)O(2), but not to UV or cisplatin. Surprisingly, this phenotype was synergistically increased by concomitant deletion of the major BER polymerase, POLbeta. Moreover, extracts from a polq null mutant cell line show reduced BER activity, and POLQ, like POLbeta, accumulated rapidly at sites of base damage. Accordingly, POLQ and POLbeta share an overlapping function in the repair of oxidative base damage. Taken together, these results suggest a role for vertebrate POLQ in BER.  相似文献   
972.
The production of labeled brominated metabolites with radioactive 82Br in Laurencia species was investigated as part of a study of the biosynthesis of halogenated metabolites from species belonging to the red algal genus Laurencia (Rhodomelaceae, Ceramiales). Radiobromide [82Br], thin-layer chromatography (TLC), and TLC–autoradioluminography (ARLG) were used. When cultured in artificial seawater medium (ASP12NTA including Na82Br) under 16:8 h light:dark (LD) illumination cycles for 24 h, each of the strains of Laurencia, Laurencia japonensis Abe et Masuda, Laurencia nipponica Yamada (laurencin-producing race and laureatin-producing race), and Laurencia okamurae Yamada, produced species- (or race-) specific 82Br-containing metabolites. In the case of the laurencin-producing race of L. nipponica, laurencin and deacetyllaurencin were found to be produced in approximately 1:1 ratio, though laurencin is the major metabolite in the wild sample. Furthermore, when cultured in the dark, the production rates of brominated metabolites in Laurencia spp. were found to be diminished. The present study strongly indicates that the use of radiobromine [82Br] in combination with the TLC–ARLG method is an effective approach for investigating the biosynthesis of brominated metabolites in Laurencia.  相似文献   
973.
974.
Molecular diversity of bamboo-associated fungi isolated from Japan   总被引:3,自引:0,他引:3  
Bamboos are common and useful plants in Japan but little information is available about their endophytes. In this study, 257 fungal strains were isolated from bamboo tissues, and 71 representative strains were characterized by 18S rRNA gene and internal transcriber spacer region sequence analysis. Phylogenetic analysis showed that the fungal isolates were located in Sordariomycetes and Dothideomycetes. Xylariales was the dominant group within bamboos. Several rRNA gene sequences were not similar to any current sequence in the database and might be a novel species or genera that could represent sources of novel biological compounds. These findings reveal that bamboos are a huge reservoir of microorganisms that should be extensively investigated.  相似文献   
975.
Rapid administration of large doses of ammonia leads to death of animals, which is largely prevented by pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists. The present study focuses on a subunit(s) of NMDA receptor involved in ammonia-induced death by use of NMDA receptor GluRepsilon subunit-deficient (GluRepsilon(-/-)) mice and the selective GluRepsilon2 antagonist CP-101,606. Acute ammonia intoxication was induced in mice (eight per group) by a single intraperitoneal (i.p.) injection of ammonium chloride. Appearance of neurological deteriorations depended on the doses of ammonium chloride injected. While wild-type, GluRepsilon1(-/-), GluRepsilon4(-/-), and GluRepsilon1(-/-)/epsilon4(-/-) mice all died by ammonium chloride at 12 mmol/kg during the first tonic convulsions, two of eight GluRepsilon3(-/-) mice survived. Pretreatment of wild-type mice with CP-101,606 prevented two mice from ammonia-induced death. Pretreatment of GluRepsilon3(-/-) mice with CP-101,606 prevented the death of three mice and prolonged the time of death of non-survivors. Similarly, the neuronal form of nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI) as well as the nonselective NOS inhibitor L-NMMA, but not the inducible NOS inhibitor 1400W, partially prevented the death of mice and prolonged the period of death. Furthermore, ammonium chloride prolonged the increase in intracellular free Ca2+ concentration ([Ca2+]i) and subsequent NO production induced by NMDA in the cerebellum. These results suggest that activation of NMDA receptor containing GluRepsilon2 and GluRepsilon3 subunits and following activation of neuronal NOS are involved in acute ammonia intoxication which leads to death of animals.  相似文献   
976.
Telomerase activation and MAPK pathways in regenerating hepatocytes   总被引:3,自引:0,他引:3  
Although there have been many reports on the relationship between the activation of telomerase and carcinogenesis, the role of telomerase in normal cellular growth is still unclear. Recently, the telomerase upregulation during the process of liver regeneration has been reported, but the precise time course of its activity and factors contributing to the activation of telomerase have not yet been fully elucidated. In the present review, we demonstrate the relationship between the activation of the telomerase, the cell cycle progression and the growth-related signaling during the liver regeneration process using an in vivo mouse partial hepatectomy model. Moreover, the importance of the role of the MAPK pathways on the telomerase activity in regenerating hepatocytes is also displayed by using an in vitro culture model. In conclusion, the telomerase activity is upregulated before hepatocytes enter the S phase, and some growth factors such as EGF and HGF contribute to this process. The activation of the growth-related signaling pathways seems to play essential roles in the upregulation of the telomerase activity.  相似文献   
977.
We have discovered and reported potent p53–MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Our lead showed strong activity in vitro, but did not exhibit antitumor efficacy in vivo for the low metabolic stability. In order to obtain orally active compounds, we executed further optimization of our lead by the improvement of physicochemical properties. Thus we furnished optimal compounds by introducing an alkyl group onto the pyrrolidine at the C-2 substituent to prevent the metabolism; and modifying the terminal substituent of the proline motif improved solubility. These optimal compounds exhibited good PK profiles and significant antitumor efficacy with oral administration on a xenograft model using MV4-11 cells having wild type p53.  相似文献   
978.
Neuropeptide W (NPW) is an endogenous ligand for GPR7, a member of the G-protein-coupled receptor family. NPW plays an important role in the regulation of both feeding and energy metabolism, and is also implicated in modulating responses to an acute inflammatory pain through activation of the hypothalamus-pituitary-adrenal axis. GPR7 mRNA has been shown to be expressed in the hypothalamus, pituitary gland and adrenal cortex. Similarly, NPW expression has been demonstrated in the brain and pituitary gland. However, the precise distribution of NPW-producing cells in the adrenal gland remains unknown. The aim of this study was to explore the distribution and localization of NPW immunoreactivity in the rat adrenal gland. Total RNA was prepared from the hypothalamus, pituitary gland and adrenal gland. RT-PCR revealed the expression of NPW mRNA in these tissues, while in situ hybridization demonstrated the presence of NPW mRNA in the adrenal medulla. When immunohistochemistry was performed on sections of adrenal gland, NPW-like immunoreactivity (NPW-LI) was observed in the medulla but not in the cortex. Moreover, NPW-LI was found to be co-localized in cells which expressed dopamine beta hydroxylase but not phenylethanolamine-N-methyltransferase. The finding that NPW is expressed in noradrenalin-containing cells in the adrenal medulla suggests that it may play an important role in endocrine function in the adrenal gland.  相似文献   
979.
980.

Background and Aims

In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo.

Methodology and Principal Findings

Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules.

Conclusion/Significance

Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号